TOSHIBA

Toshiba Quantum Key Distribution Systems

Robert Woodward

Toshiba Europe Limited Cambridge Research Laboratory 2021.03.17

TOSHIBA

Contents

- 1. Introduction to QKD at Toshiba
- 2. QKD System Design
- 3. Features, Performance & Network Integration
- 4. Use Cases

Toshiba Europe Limited Cambridge Research Laboratory 2021.03.16

Quantum Key Distribution at Toshiba

Toshiba's Cambridge Research Laboratory founded in 1991 and has pioneered quantum technology research, particularly quantum communications, for decades.

Recent performance records include: >10 Mbit/s secure bit rate, >600 km distance, high-bandwidth encrypted (100G) multiplexed classical & quantum comms.

In 2020, a new Quantum Technology division was formed, launching QKD as a commercial product for quantum-safe communications: <u>https://www.toshiba.co.jp/qkd/en</u>

QKD Hardware

The Toshiba QKD system distributes keys between 2 nodes, for delivery to key-consuming applications (e.g. 100G AES encryptors)

Uses T12 QKD Protocol

(Toshiba protocol based on efficiency improvements to BB84, with decoy states)

Each QKD System Comprises:

- 1 x QKD Transmitter Unit
- 1 x QKD Receiver Unit
- 2 x Control Servers

QKD Unit:

- 19" rack mount device (2U height)
- < 15 Kg

Control Server:

- 19" rack mount device (1U height)
- < 8 Kg

QKD System Interface

- All required software is included on Control Server.
- Graphical user interface (GUI) can be used for real-time monitoring and log viewing.
- The QKD Control Servers include a Key Management System (KMS) for key storage & key delivery
- KMS follows the ETSI GS QKD 014 Standard v1.1.1 (already widely supported by encryptors)

https://www.etsi.org/deliver/etsi_gs/QKD/001_099/012/01.01.01_60/gs_QKD012v010101p.pdf

QKD System Operation

- Plug & play installation
- Hands-free auto-alignment routine when starting up
- Numerous proprietary technologies for self-stabilizing high-rate QKD (ensures continuous optimal performance, even if fibre link is perturbed)

 Precision temporal & spectral filtering to minimize noise, enabling highbandwidth multiplexed classical signals

Use Case: Industrial Quantum-Secure Fibre Network

Toshiba & BT recently demonstrated the **UK's first industrial quantum-secure network** (connecting 2 smart manufacturing sites across 7 km in Bristol, UK).

All off-the-shelf equipment, compatible with national network infrastructure. Keys supplied to 10G encryptor: **transparent 10G-encrypted link for end-users.**

Installation was plug & play (**all QKD and user data multiplexed on existing fibre**) and the system has run for 6 months uninterrupted.

https://www.ispreview.co.uk/index.php/2020/10/bt-and-toshiba-deploy-first-uk-industrial-quantum-secure-fibre-network.html

Use Case: Industrial Quantum-Secure Fibre Network

Use Case: Protecting Medical Data in Transit & at Rest

Within OpenQKD consortium, Toshiba supplied 2 QKD devices for **protecting medical data** transmitted between 2 hospitals and 2 data centres.

QKD protected data in transit. Sharmir secret sharing protected data at rest.

This demonstrates **integration of QKD to form quantum-secure communication systems**, compatible with existing networks and their data needs.

- System installed by end users with remote assistance from Toshiba
- QKD bit rate: 1.92 Mb/s over 10 km link (QBER: 3.9%)
- Real-world operation with medical data

OPEN 🗇 QKD

Upcoming Use Cases in OpenQKD

Toshiba is providing numerous system in OpenQKD to demonstrate seamless integration of QKD into existing communications networks across Europe, including:

Questions?

Quantum Key Distribution

The new age of secure communication, powered by quantum physics

