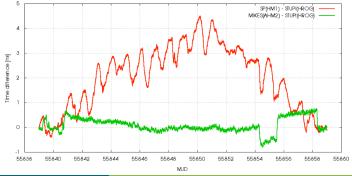


Time and Frequency services for end-users

9.3.2021, GÉANT Infoshare: European Time and Frequency Services – Principles, Challenges and Use Cases
Jani Myyry, CSC/Funet



Time & Frequency transfer – the very beginning (2011)

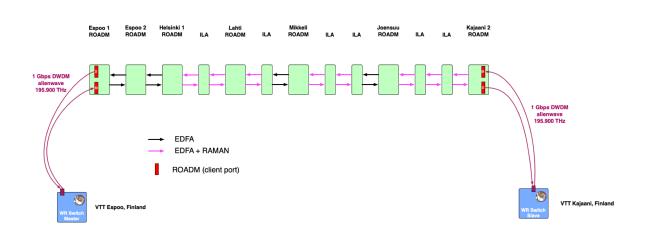
- We got a proposal from Sweden
 - o "We have a router (Cisco 12K) and one of Sven-Christers optical boxes we can lend to Mikes, I can even drive it there in my old VW bus..." (Peter Löthberg)
- The link was built
 - Used STM-64 transponders not needed anymore for our uplinks
- Survived NORDUnet's upgrade to coherent system
 Was moved to OTN switching layer
- Decommissioned more than 5 years ago

Uni-directional T&F transfer

The first real T&F experience in Funet network (2013)

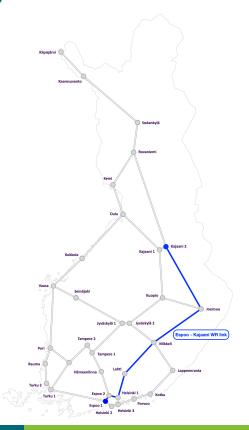
- VTT/Mikes approached us with a question:
 - o Can we build a T&F link from Espoo to Kajaani?
- Technology would be PTP White Rabbit
 - o Originally designed for max ~ 10 km links in CERN
 - o But Espoo-Kajaani is ~ 800 km?
- Discussed with the DWDM vendor and asked if they would support such?
 - No, but they still provided an alienwave (for "2.5G OTU1")
- Our part was relatively easy
 - 1. Bought some fixed 1G DWDM SFP optics (196.0 THz)
 - 2. Plugged optics into White Rabbit switches and patched to the DWDM system
 - 3. And it just worked!
- Was the first PTP White Rabbit based long-haul T&F link in the world
 - o Software required some changes as RTT was more than originally expected

Espoo – Kajaani PTP White Rabbit link (original setup)



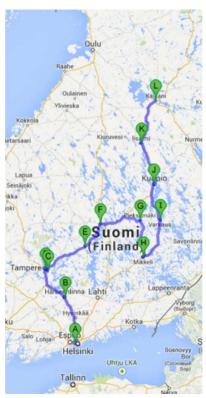
- ~ 1000 km

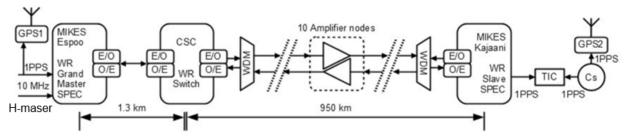
With CD compensation



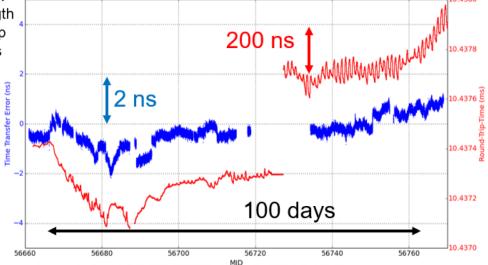
Espoo – Kajaani PTP White Rabbit link (current setup)

ADVA FSP3000:


- 1G alienwave 195.90 THz
- Without CD compensation
- ~ 800 km



1000 km Espoo - Kajaani link



- bidir duplex SFPs and link
- 10 km ~1000 km link length
- 10.4 millisecond round trip
- Uplink downlink = ~4 us
- 12 amplifiers/multiplexers
- Longest span ~140 km

Issues:

- Network maintenance changes asymmetry
- Stability limited by Cs-clock and GPS-PPP

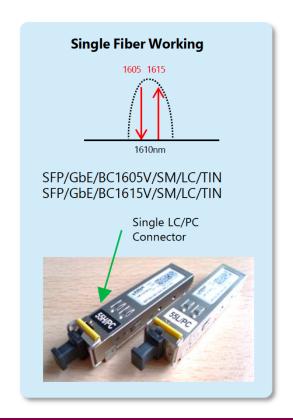
[Dierikx et al. http://dx.doi.org/10.1109/TUFFC.2016.2518122]

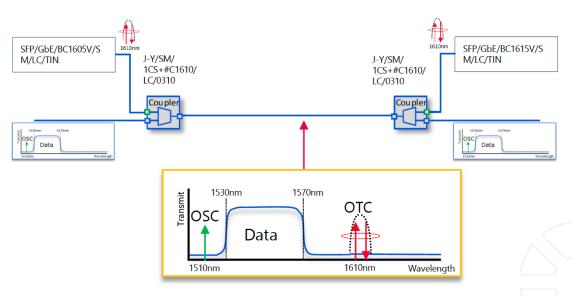
Bi-directional T&F transfer (metro)

csc

Bi-directional T&F transfer in the metro networks

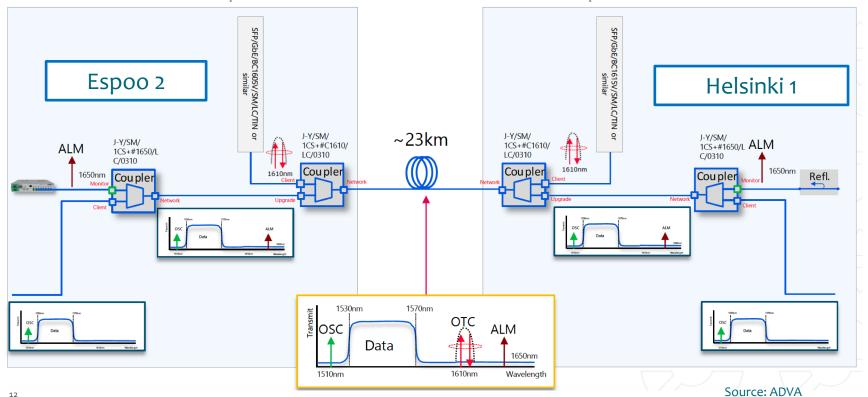
- Bidi optics and a dedicated fiber
 - 01310/1490 nm, 1310/1550 nm BX optics
 - 01605/1615 nm bidi optics (ADVA)
- CWDM filters and different Tx wavelength on both ends 01470/1490 nm, ...
- DWDM filters and different Tx wavelength on both ends 0193.90/194.00 THz, ...
- Other options?




Use case: Espoo – Helsinki PTP-WR link

- Single fiber setup (in practice)
 - o ADVA 1610 nm CWDM filter daisy chained with 1650 nm OTDR filter
 - OADVA 1605 and 1615 nm optics
- PTP White Rabbit switches on both ends
- Provide atomic clock reference for a Funet NTP server

Use case: Espoo – Helsinki PTP-WR link



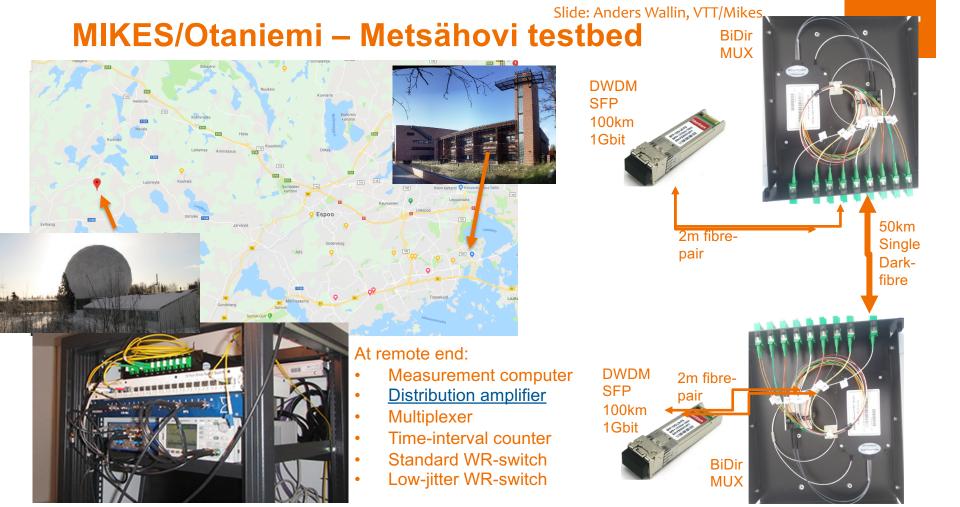
Source: ADVA

Use case: Espoo – Helsinki PTP-WR link

Use case: Espoo - Metsähovi T&F links

- A fiber pair (~55 km) was splitted few year ago for two purposes:
 - One fiber for data traffic
 - Another fiber for T&F signals (re-routed directly to the time lab)
 - o Bidi DWDM filters + 1310 nm
- Connects VTT/Mikes and Metsähovi observatories
 - Aalto University
 - o Finnish Geodetic Institute, National Land Survey
- Plans for filter renewal to support
 - o 1310 +- 50 nm (ultra-stable laser, BFDA amplifiers, VTT/Mikes research project)
 - Bidi DWDM (C-band)
 - o 1610 +- 6.5 nm (L-band DWDM or 1605/1615 nm bidi)
 - \circ OTDR

1310 nm, ultra-stable laser (Thomas Fordell, VTT/Mikes):


- Will be used e.g. for testing distribution of laser pulses from a frequency comb that has been phase-locked to an ultra-stable laser (at 1348nm)
- A feedback loop will compensate for fiber phase fluctuations, and fiber losses will be compensated using bismuth-doped fibre amplifers (BDFA)

Use case: Espoo - Metsähovi T&F link (current)


14 11.3.2021 Source: fs.com

Results: stability Otaniemi-Metsähovi, 50 km link

single-fibre 100 GHz (0.8 nm) between MTX and STX wavelengths

Trace	Notes	Input Freq	Sample Interval	ADEV at 1s	Duration	Acquired	
h3-lj-24h		10.000 MHz	0.010 s	2.25E-12	1d 0h 0m 0s	8640000 pts	Symme
h3-std-24h		10.000 MHz	0.010 s	2.11E-11	1d 0h 0m 0s	8640000 pts	Symme
h3-h4-24h		5.000 MHz	0.010 s	2.48E-13	1d 0h 0m 0s	8640000 pts	Symme
std-lj-24h		10.000 MHz	0.010 s	2.01E-11	1d 0h 0m 0s	8640000 pts	Symmo
h3-lj-100h		10.000 MHz	1 s	8.54E-13	4d 4h 0m 0s	360000 pts	Symme

Typical asymmetry coefficients measured BiDir links

SFP	TX / nm	RX / nm	Asymmetry
BX10	1490 nm	1310 nm	~250 PPM
Fs.com 80km	1550 nm	1490 nm	192 PPM
BiDir 1605 / 1615 nm	1605 nm	1615 nm	?? maybe 40 PPM?
Fs.com 10Gbit SFP+	1330 nm	1270 nm	14 PPM
Adjacent DWDM-channels	TX_CH	TX_CH+100 GHz (0.8 nm)	~3 PPM

Bi-directional T&F transfer (long-haul)

Bi-directional long-haul T&F challenges

- Multiple ways to implement
 - Dedicated fiber (very difficult in practice due to costs)
 - Side-band filters and regeneration when needed (relative easy and with acceptable costs)
 - Side-band filters and bi-directional amplifiers (if available for chosen band)
- Our experiences (will) base on side-band filters and regeneration
 - Other options are not excluded but they are more complex to implement
 - Some comments in the following slides might be vendor-specific

Bi-directional long-haul T&F challenges

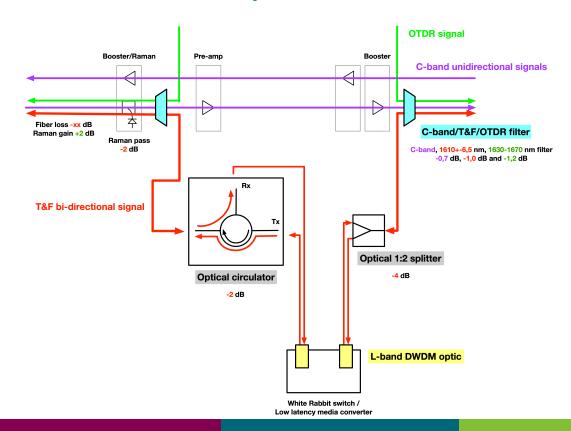
- RAMAN amplifiers
 - o No filters can be installed in front of the RAMAN amplifier
 - 0 < ~ 1528 nm wont pass (in practice) RAMAN amplifiers</p>
 - o ~ 2 dB insertion loss for > C-band signals
 - Except: extensive loss in ~ 1570 nm region (ADVA)
 - o ~ 2-3 dB RAMAN gain in 1600 nm region
 - o 2 dB gain measured for 1650 nm OTDR signals
- 1600 nm region between C-band and OTDR (1630-1650 nm)
 - o Little bit higher loss per km in G.652 fibers
 - Higher chromatic dispersion
- Extra C-band loss to be avoided if possible
 - o Daisy chaining different filters not an optimum solution

Joint planning for T&F links

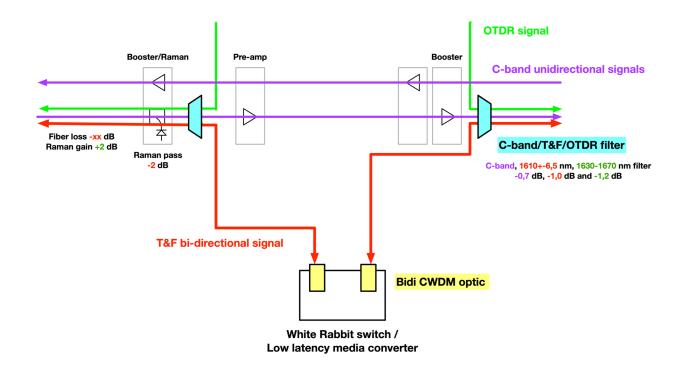
- Extensive discussions and planning late 2019
 - Funet and SUNET
 - Netnod, RISE (SE) and VTT/Mikes (FI)
 - o ADVA
- 1610 +-6,5 nm chosen for T&F
 - Already tested in Finland and Sweden by using ADVA 1605/1615 nm optics and separate 1610 +-6,5 nm filters
 - o L-band DWDM optics available for ~ 1610 nm with required CD tolerance
 - o EDFA noise filtered out so should not be an issue (> 1570 nm)
 - o Only minimal RAMAN noise expected
- White Rabbit switches and low latency/jitter media converters
 - L-band optics tested/used by Netnod/RISE
- More optimization for filtering structure...

T&F filters

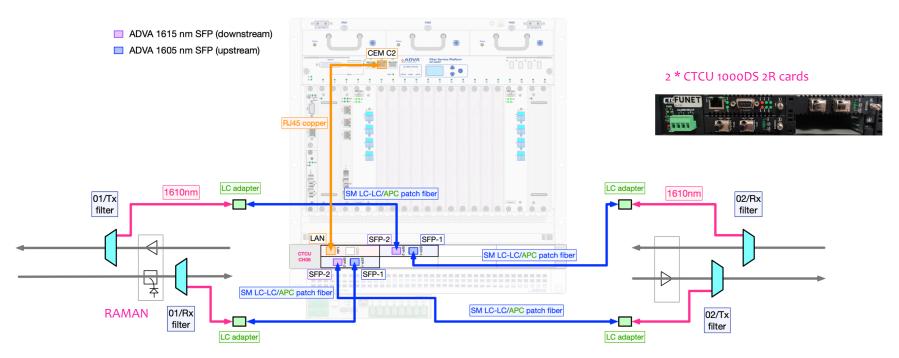
- Customized C-band (1525-1570 nm), T&F (1610 +-6,5 nm) and OTDR (1630-1670 nm) filter
 - o o,7 dB C-band loss (very important, similar with existing OTDR filter)
 - o 1,0 dBT&F loss (very important on high loss links)
 - 1,2 dB OTDR loss (less important)
 - Fully bi-directional (no calibration needed)
- Customized optical circulator for high loss links (21+ dB)
 2 dB insertion loss
- Customized 1:2 optical splitter for low to medium loss links
 - o 4 dB insertion loss
- Very low CAPEX



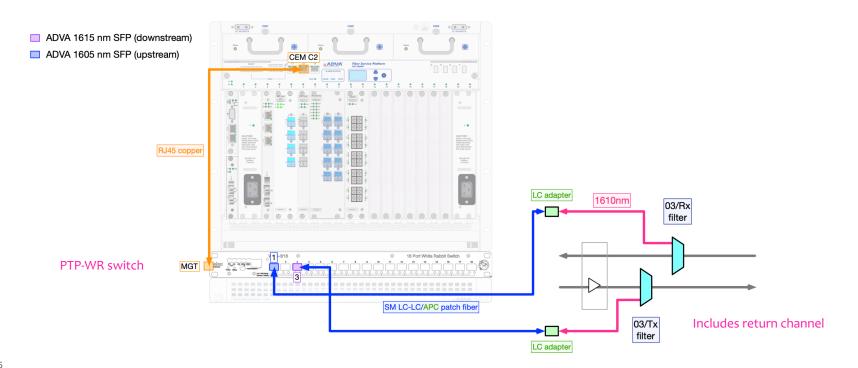
Photos: CSC/Funet and Netnod



T&F filters in a node (L-band DWDM optics)



T&F filters in a node (bidi ADVA optics)



Use case: Kajaani-Oulu bidi PTP-WR link (ILA sites)

Use case: Kajaani-Oulu bidi PTP-WR link (end-sites)

End-users, requirements and future

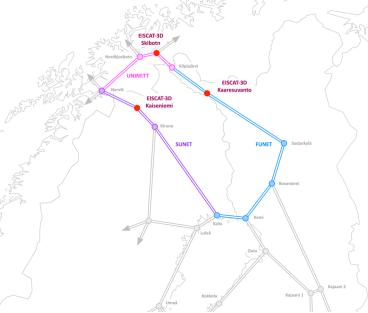
csc

End-users for T&F connections

- National time lab
 - Distributed clock sites
 - Services for research infrastructures and researchers
 - o International links to other national time labs
- Distributed research infrastructures
- Universities and research institutes
 - Very few end-users so far (5G test stations, reference for time servers)
- Industry
 - o Potentially smart grids, telecom networks (5G), etc.
 - o An NREN role here?
- National critical infrastructure
 - "Avoid dependency from GNSS"
 - Sustainable funding required

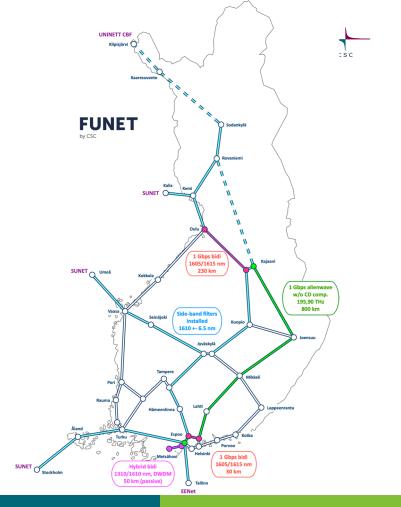
Responding to end-user requirements

- **Collaboration** with time labs and research infrastructures
 - o Gather requirements and feedback
 - o Participate planning together with end-users
- Prepare your network infrastructure
 - o Require support from the vendors for alienwaves and side-band access
 - o Standardize as much as possible but be flexible to re-engineer if needed
 - o If reasonable, include support for T&F channels when the system or fiber links are build
 - A ROADM with dual WSS will help as OOK channels can be connected directly to ROADM client ports without filters
- Service models
 - o Might be difficult as services are usually highly customized
 - o Project funding might not fit easily to typical NREN service portfolio
 - o Sometimes need to be creative...


Potential new links in the future

- Finland-Sweden national time infrastructures
 - o Joint planning for filters with SUNET, Netnod and FI/SE time labs
 - o Both are building T&F links over 1610 nm
 - o Netnod: L-band DWDM optics, WR switches
 - VTT/Mikes: ADVA 1605/1615 nm bidi optics, WR switches and 2R converters
- Finland-Estonia link?
 - Filters already installed
- More research sites in north?

EISCAT-3D


- EISCAT-3D international research project
 - Radar observations and incoherent scatter techniques to investigate Earth's atmosphere
 - Stations located in Kaaresuvanto (FI), Kaiseniemi (SE) and Skibotn (NO)
- Centralized model for computing
 - Computing clusters in Skibotn (NO)
 - Raw data from the antenna fields transported to computing site
 - ~ 4 Tbps data streams per remote site (in FI and SE) over 3 NRENs' optical networks
- Uses PTP White Rabbit for intra-site synchronization
 - o Long-haul PTP White Rabbit between sites?
 - o Partially prepared with side-band filters

T&F services and infrastructure in Finland

- Current services
 - o Espoo-Kajaani PTP-WR unidirectional alienwave
 - o VTT/Mikes time labs
 - o Espoo-Helsinki PTP-WR bidi 1605/1615nm
 - Funet NTP server reference
 - o Espoo-Metsähovi PTP-WR bidi DWDM
- Under construction
 - o Kajaani-Oulu PTP-WR bidi 1605/1615nm
 - VTT/Mikes
- Side-band filters (1610 +- 6.5 nm) installed
 - South-north route
 - o 3 * FI-SE CFBs
 - o FI-EE CBF
- Future network extensions supported by default

Jani Myyry

Senior Network Specialist Funet CSC – IT Center for Science Ltd.

jani.myyry@csc.fi

facebook.com/CSCfi

twitter.com/CSCfi

youtube.com/CSCfi

linkedin.com/company/csc---it-center-for-science

github.com/CSCfi