

# **DTN Tuning**

### Joseph Hill

Multiscale Networked Systems University of Amsterdam



## **Topics**

- Tuning and Workflows
- Networking
- Storage
- Architecture



## **Tuning and DTN Workflows**

- Why do we need to tune
- Requirements depend on the workflow
- Determine what you are trying to optimize
  - User experience
  - Resource utilization
  - Efficiency
- User Experience as Sender / Receiver
- Simultaneous Users
- Fairness between DTNs



## **Tuning**

- Test before and after tuning
- Tuning for production vs testing
- Tools
  - sysctl and proc
  - iproute2
  - ethtool
  - BIOS settings
  - Vendor specific tools (e.g. mlxlink)



## **Tuning Kernel Parameters**

- Sysctl
  - sysctl command
  - /etc/sysctl.conf and /etc/sysctl.d/
- proc filesystem
  - /proc and /proc/sys

# sysctl net.ipv4.tcp\_available\_congestion\_control net.ipv4.tcp\_available\_congestion\_control = reno cubic

\$ cat /proc/sys/net/ipv4/tcp\_available\_congestion\_control reno cubic

\$ cat /proc/sys/net/ipv4/conf/eth0.99/forwarding # sysctl net.ipv4.conf.eth0/99.forwarding



## **Networking**

- Network parameters on the host
- Socket Parameters
- Protocol Specific Parameters
- Driver Settings
- MTU
  - Detection
  - Jumbo frames
- Traffic Control (tc)
  - Queue Discipline



#### **Socket Parameters**

- Apply to all protocols
- Set with sysctl or proc filesystem
- Send and Receive Buffer sizes
  - net.core.rmem\_default
  - net.core.wmem\_default
  - net.core.rmem\_max
  - Net.core.wmem\_max
- Privileged applications can ignore limits



#### **TCP Parameters**

- Set with sysctl or proc filesystem
- Send and Receive Buffer sizes
  - net.ipv4.tcp\_rmem
  - net.ipv4.tcp\_wmem
  - Three values: minimum, default, maximum
  - Default value overrides net.core.[r|w]mem\_default
- TCP Memory Management
  - net.ipv4.tcp\_mem
  - Three values: low, pressure, high



#### **TCP Parameters**

- Congestion Control
  - net.ipv4.tcp\_available\_congestion\_control
  - net.ipv4.tcp\_allowed\_congestion\_control
  - net.ipv4.tcp\_congestion\_control
  - Kernel module may need to be loaded
  - Privileged program may use any available
  - ss utility provides information on existing TCP connections



## **Network Driver Setting**

- Send and Receive Ring Buffers
- Offloading features
- ethtool
- Vendor tools (mlxlink)

```
# ethtool --show-ring enp33s0f0
Ring parameters for enp33s0f0:
Pre-set maximums:
RX:
          8192
RX Mini:
RX Jumbo:
TX:
          8192
Current hardware settings:
RX:
          1024
RX Mini:
RX Jumbo:
TX:
          1024
```

```
# ethtool --show-features enp33s0f0
Features for enp33s0f0:
rx-checksumming: on
tx-checksumming: on
    tx-checksum-ipv4: on
    tx-checksum-ip-generic: off [fixed]
    tx-checksum-ipv6: on
    tx-checksum-fcoe-crc: off [fixed]
    tx-checksum-sctp: off [fixed]
scatter-gather: on
    tx-scatter-gather: on
    tx-scatter-gather-fraglist: off [fixed]
tcp-segmentation-offload: on
    tx-tcp-segmentation: on
    tx-tcp-ecn-segmentation: off [fixed]
    tx-tcp-mangleid-segmentation: off
    tx-tcp6-segmentation: on
udp-fragmentation-offload: off
generic-segmentation-offload: on
generic-receive-offload: on
large-receive-offload: off
```



## **Storage**

- Types
  - Spinning Disks
    - Larger Capacities
  - Solid State Drives
    - Faster Internally
  - Differences in durability
- Interface
  - SATA 6 Gb/s
  - SAS 12 Gb/s
  - NVMe 32 Gb/s (PCle 3.0 4x) (SSD only)
  - SATA disk compatible with SAS interface



## **Storage Speeds**

- Internal drive speeds typically slower than interface speed
  - Drive buffers used to compensate
- Accessing data sequentially provides better internal throughput
  - Some vendors provide specs for sequential and random throughput
  - SSD does not necessarily need to be sequential (spatial locality)
- Read performance is typically better than write
  - Read/Write optimized drives
- Performance may degrade over time
  - Thermal throttling
  - TRIM



## **Storage Tuning**

- Physical devices can be logically grouped to increase performance
  - RAID 0
  - Software RAID
- Memory can be used to improve apparent storage performance
  - Short term
  - Read Caches
  - Write Buffers
- Performance differs depending on the file system in use
  - Large files versus lots of small files
- TRIM/discard implementation
  - OS, files system, and device dependent
- Sector size
  - 512e vs 4Kn



#### **Architecture**

- Fast vs Many Cores
  - Depends on workflow
  - Single/Multi-Threaded application
    - Multi streams is not necessarily multi threads
  - Simultaneous users
- PCI Express
  - Lane availability (Intel vs AMD)
  - PCIe 4.0 availability and support
  - PCle switches



#### **Architecture**

- Non-Uniform Memory Access (NUMA)
  - Physical location of devices within a system matters
  - numactl and numad utilities
- Power Saving
  - Can be disabled to improve performance
  - Different setting for production and testing
  - cpupower utility
- IRQs
  - Handle close to the hardware (NUMA node)
  - Avoid bottlenecks
  - irqbalance utility





# Thank you

Any questions?

www.geant.org



© GÉANT Association on behalf of the GN4 Phase 3 project (GN4-3). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 856726 (GN4-3).

