WFO - Telemetry Module -
gnmic-cluster-chart

Peter Boers - SURF



Whoami?

e Peter Boers

* Software Engineer/Architect for the networking department
@SURF

* Tech-Lead of the Workfloworchestrator Programme

* Involved in all sorts of Automation and Orchestration endeavours
over the past 12 years, 8 of which @SURF



Origins of the idea....

ik — TSDB ML Models
&5
1 gNMI

ENMIC s
A

Sanitization Correlators

Big Data

Workflow

Orchestrator Proposers




Project Rationale

* Rationale for creating this project:
* Experimenting with upcoming technologies
Exploring solutions for vendor-agnostic monitoring
SURFneto
NMS-Like look and feel for the WFO orchestrator
e ML
* Fase out of legacy monitoring like SNMP in favor of gNMI

* Project goal: Develop a highly scalable telemetry solution based
on the gNMI protocol



Introduction to the Tech Stack



gnmic-cluster-chart

4y

— \ \

\ ) .
A B 3 Caka ] Y —
f" ' Collector Relay ]

Data flows from left to right and _
triggers autoscaling events Autoscaling
Kafka is used as a buffer to
decrease memory footprint

Autoscaling



WEFO telemetry module tech stack

* SNMlc - gNMl collector
* OpenConfig — vendor agnostic

Kubernetes - scalability
Kafka - scalability
Prometheus/InfluxDB — storage

Helm — package management <- gnmic-cluster chart



WEFO telemetry module tech stack

* SNMlc - gNMI collector
* OpenConfig — vendor agnostic

Kubernetes - scalability
Kafka - scalability
Prometheus/InfluxDB — storage

Helm — package management <- gnmic-cluster chart



sNMI(c)

* gRPC Network Management Interface

* Protocol for the modification and retrieval of configuration form a target
device as wel as the control and generation of telemetry streams from a
target device to a data collection system.

* https://datatracker.ietf.org/meeting/98/materials/slides-98-rtgwg-gnmi-
Intro-draft-openconfig-rtgwg-gnmi-spec-00

* Uses HTTP/2 to setup a bi-directional secure communication
channel between router and subscriber

* Efficient use of resources built into the protocol
* Less buffering and less information sent by the router


https://datatracker.ietf.org/meeting/98/materials/slides-98-rtgwg-gnmi-intro-draft-openconfig-rtgwg-gnmi-spec-00
https://datatracker.ietf.org/meeting/98/materials/slides-98-rtgwg-gnmi-intro-draft-openconfig-rtgwg-gnmi-spec-00

sNMI(c)

Streaming telemetry benefits over SNMP

devices stream data based on a specified frequency or upon state change
datais sent as soon as itis available, reducing the need to buffer

no single large request for all data (unlike SNMP polling)

data sent incrementally, e.g., only for those data items that have changed
ability to distribute the telemetry sources (e.g., directly to linecards)

users issue subscription requests via RPC for data of interest

data exported in a well-structured, common format, e.g., based on YANG
models

device and collector communicate over a secure, authenticated, reliable
channel

* https://datatracker.ietf.org/meeting/98/materials/slides-98-rtgwg-gnmi-intro-draft-openconfig-rtgwg-gnmi-spec-00



sNMI(c)

* sNMlc is a gNMI capable client application.
* Builtin go-lang
* Able to be setup in a clustered manner (scalable)

* Pluggable
* Different outputs and inputs
* Data pipeline support

* Clustering

* Collector mode - collects from the routers
* Relay mode — streams data to the TSDB

* Easily processes 100k+ events p/s

* https://gnmic.openconfig.net/



Tool choices

* SNMlc - gNMl collector
* OpenConfig - vendor agnostic

Kubernetes - scalability
Kafka - scalability
Prometheus/InfluxDB — storage

Helm — package management <- gnmic-cluster chart



OpenConfig

* Vendor-neutral, model-driven network management
* Defined in Yang

* “VVendor Agnostic”
* Not allimplementations are equal across all vendors

* Lots of support, but incomplete

* https://openconfig.net/



WEFO telemetry module tech stack

* SNMlc - gNMl collector

* OpenConfig — vendor agnostic
* Kubernetes - scalability

* Kafka - scalability

* Prometheus/InfluxDB — storage

* Helm - package management <- gnmic-cluster chart



Kubernetes

* Obvious choice for setting up scalable workloads

e StatefulSet workload
e Pods need to communicate cluster state to one another
» Statefulset is suitable for target re-allocation

* Kubernetes leases for target locking
* Depends on scale and requirements

* HorizontalPodAutoscaling
* For scaling against predefined CPU or Mem usage
* Future work is to scale with a custom metric e.g: Locked targets



WEFO telemetry module tech stack

* SNMlc - gNMl collector

* OpenConfig — vendor agnostic

* Kubernetes — scalability

* Kafka - scalability

* Prometheus/InfluxDB — storage

* Helm — package management <- gnmic-cluster chart



Kafka

 Kafka is used as a buffer between collector and relay

* Potentially can be used as a place to enact filtering and/or event
processing before storage in the TSDB

* Enables other tools to act on the raw telemetry stream

* Significantly decreases the memory footprint the collectors and
relays need

* Buffers billions of messages quite easily
* Easily deployed on Kubernetes with the strimzi operator

* https://strimzi.io



WEFO telemetry module tech stack

* SNMlc - gNMl collector
* OpenConfig — vendor agnostic

Kubernetes - scalability
Kafka - scalability
Prometheus/InfluxDB - storage

Helm — package management <- gnmic-cluster chart



Time Series Database (TSDB)

* This is where you store your network events

* SNMlc supports Prometheus and InfluxDB
* Prometheus is pull based
* InfluxDB is push based

e @SURF we work with InfluxDB

* The discussion of which TSDB to use and why was is of scope for
this project.



WEFO telemetry module tech stack

gNMic - gNMI collector
OpenConfig — vendor agnostic
Kubernetes - scalability

Kafka - scalability

Prometheus/InfluxDB — storage
Helm - package management <- gnmic-cluster chart



Helm

* Helm is the tool we used to package all parts of this softwarestack

* |t provides a documented, standardised and user friendly manner
to deploy on Kubernetes

* |t allows enough customisation to setup the software...

* .... but at the same it makes sure you do not have to worry about
the kubernetes specifics

* A helm chartis one of the outputs of this project.



Deployment architecture



Architecture diagram

PN

N4y
i \ \

o ) ) -
AP N 3 Catka ] 3 e
f“ " Collector Relay }
ora

A f R Data flows from left to right and _
triggers autoscaling events Autoscaling
Kafka is used as a buffer to
decrease memaory footprint

Autoscaling



How does gNMlc work?

* |t executes RPC calls on the Router
* Capabilities
e Get RPC
e Set RPC
e Subscribe RPC

* [t uses an x-path like notation to describe to the router what
iInformation nodes it would like to stream
* /interfaces/interface[name=xe-0/0/0]/state/counters
* /components/component/state

* May use vendor specific yang or OpenConfig yang

* https://openconfig.net/projects/models/paths/
* https://apps.juniper.net/telemetry-explorer/


https://openconfig.net/projects/models/paths/
https://apps.juniper.net/telemetry-explorer/

What is the difference between gNMI and
SNMP?

SNMP Telemetry
Collector Device Collector

Device
* Stream modes: E . @ ﬂ

* Target Defined i s One parsing [+————
* Once ﬁr:;qp::;ng Receive CPU usage (1) request Receive CPU usage (1) }
. ~ ” T=1s
Sampled e~ casumiiieudenibman. e <5 T=5mi Receive CPU usage (2)
PR ————— = n >
* Onchange Second parsing .
. . . request Receive CPU usage (2) d Receive CPU usage (3)
* Multiple information "
sources within one = =
request C A T
N:"e::;ltng Receive CPU usage (n) N Receive CPU usage (n) d

https://thinkpalm.com/blogs/a-guide-to-gnmi-grpc-how-are-they-revolutionizing-network-management/



How does a single gNMlc process work?

username: admin
password: NokiaSrl1!
insecure: true
encoding: json_ietf gnmic -a ut@42a-jnx-@3.dcn.surf.net:32767 ——config config-prd.yml subscribe -—path "/interfaces" --mode stream -—stream-mode target_defined
log: true )
"source": "ut@42a-jnx-83.dcn.surf.net:32767",
"subscription-name": "default-173@792452",
targets: "timestamp": 1730792457015440836,
"time": "2024-11-05T@8:408:57.015440836+01:00",
"prefix": "interfaces/interface[name=em2]/subinterfaces/subinterface[index=32768]",
"updates": [
{
"Path": "state/counters/in-octets",
"values": {
"state/counters/in-octets": 31885882158

}J
{
subscriptions: "Path": "state/counters/in-pkts",
T . o . "values": {
# Add subscriptions configuration here "state/counters/in-pkts": 89336731
}J
{
"Path": "state/counters/out-octets",
"values": {
"state/counters/out-octets": 5861128757

I
{
"Path": "state/counters/out-pkts",
"values": {
influxdb-output: "state/counters/out-pkts™: 49717692

type: influxdb

url: http://influxdb:8086
bucket: telemetry # db n:
token: gnmic:gnmic # usern:
batch-size: 1000
flush-timer: 18s

https://gnmic.openconfig.net/deployments/deployments_intro/



How to handle scale?

* A single router produces thousands of events per minute if you
subscribe to ”/”

* This quickly requires too many resources from a single instance
when scaling the amount of routers

* What do you need to do when you have around 400 nodes as is
the case @SURF

* SNMlc Clustering mode



Scaling is complex, what do you run into?

e Resource limits
* CPU and Memory

* /0

* Network — Currently using around +/- 25MB/s in +/- 75MB/s out
* Storage — TSDB has a certain way of writing to disk (batched)

* Target acquisition and distribution
* gNMlc cluster mode

* Application constraints
 Many Routers
* One database

e Kubernetes API Rate limits
* |[nsome cases

* Continuous trade-off
* Tocompress or not to compress???



Scaling is complex, what do you run into?

Current Rate of Bytes Received Current Rate of Bytes Transmitted

77.5 mBJs

21.3 mB/s

11.2 mess

119 kB/s 235 kB/s

consul-deploy gnmic-collector gnmic-relay consul-deploy gnmic-collector

gnmic-relay

Current Status

Workload Type Rx Bytes Tx Bytes Rx Bytes (Avg) Tx Bytes (Avg) Rx Packets Tx Packets Rx Packets Dropped Tx Packets Dropped

gnmic-relay statefulset 35.1 MiB/s 73.6 MiB/s 3.51 MiBfs 7.36 MiB/s 16.0 kp/s 20.0 kpfs O p/s 0 pfs
gnmic-c statefulset 20.3 MiB/s 10.7 MiB/s 3.38 MiB/s 1.78 MiB/s 20.4 kp/s 19.1 kp/s 0 p/s 0p/s

consul-deploy deployment 11.7 KiB/s 22.9 KiB/fs 11.7 KiB/s 22 9 KiB/fs 96.8 p/s 61.7 p/s Op/s 0 pfs




Gnmic-cluster-chart architecture

* Setup an event driven architecture

* Implement separation of concerns
* Collectorrole
* Relayrole
* Coordinators
* Buffering

* Scaling the roles separately



Event driven architecture

EVENT-DRIVEN ARCHITECTURE COMPONENTS

Event A Event A
—- ——

Event A
Event B —_—
— Event B
—

Event B
Event C .

Producer 3 S Consumer 3

subscribedto B + C

altexsoft
software r&d engineering



Event driven architecture

PN

N4y
i \ \

o ) ) -
AP N 3 Catka ] 3 e
f“ " Collector Relay }
ora

A f R Data flows from left to right and _
triggers autoscaling events Autoscaling
Kafka is used as a buffer to
decrease memaory footprint

Autoscaling



gNMilc clustering process

Service discovery

Leader Election

Target distribution

On failure, repeat from step 1.

b~

https://gnmic.openconfig.net/user_guide/HA/



gNMlc clustering mode

— —3 —

|

—_—

] 1 Ly
T.
‘ } 5
T.
i b ¥
T.
i b ¥
'|'.

https://gnmic.openconfig.net/user_guide/HA/



Quorum state management

* Kubernetes leases
* Consul
* Separate state for the collector and relay processes

* Redis provides a caching layer and method to do inter process
communication



What are other things gNMlc can do?

* Restful API
* Proxy service towards the juass

"name": "gnmic-collector",

Route rS "number-of-locked-targets": 374,
"leader": "gnmic-collector-3",
"members": [

* Demo later { "name": "gnmic-collector-e",

"api-endpoint": "gnmic-collector-@.gnmic-collector-gnmic-api.streaming.svc.cluster.localz789@",
"number-of-locked-nodes": 62,

o CLI t l "locked-targets": [
OO "11s881a=jnx-84.dcn. surf.net",

"rt@@3a-jnx-02.dcn.surf.net",

o "asd@49a-jnx-01.dcn.surf.net",
o D t "gvB49a-jnx-@1.dcn.surf.net",
a a ro C es S I n "gv@42a-jnx-01.dcn.surf.net",
"nm@12a-jnx-@1.dcn.surf.net",
. "ut@28a-jnx-@1l.dcn.surf.net",

® E n rl C h I I Ie nt "ut@38a-jnx-01l.dcn.surf.net",

"gn@13a-jnx-@1l.dcn.surf.net",
"gd@@la-jnx-02.dcn.surf.net",

] © localhost:7890/apifvi/cluster

oncatenation TerANa et don purt. et
. "ehv@22a-jnx-01.dcn.surf.net",
[ ] D l "rt@10a-jnx-01.dcn. f.net",
eletion esdbese Twecdi denssur et
. "ed@@1lb-jnx-@1.dcn.surf.net",
e Conversion



Helm chart architecture and
overview



The gnmic-cluster-chart

* Contains all manifests needed to setup gNMilc in cluster mode

* Pre-requisites
e Strimzi operator installed
* Kafka broker setup
* Redis
 Optional: Secret reflector
e Sufficient CPU, Mem, Storage

* Resources for +/- 2 billion events per day

Storage (90 days)

20 160Gi 3Ti



Chart components

* Statefulset configuration

* ConfigMaps

* HorizontalPodAutoscaling

* RBAC & ServiceAcounts

* Secrets and Secretproviders
* Ingress and services

* Optional: Kafka manifets

* Optional: Consul



Demo Time



Demo components

* Overview of the helm chart
* Deploymentin Argo
* sNMlc

* Cli
Openconfig models
Deployment

Change proces
gNMI Proxy

* Consul

* Kafka Monitoring

* Grafana Dashboard

* Orchestrator integrations



Wrap-up and Q&A



Future work

* Custom metrics for scaling
* Acquired targets

* Pre-configured processors
* ML workloads that use the raw telemetry stream
* More integrations with WFO



Deliverables

* Helm chart: &
* Automatic target acquisition: WIP
* P.O.C: WFO integration example: &



Questions?



	Slide 1: WFO – Telemetry Module – gnmic-cluster-chart
	Slide 2: Whoami?
	Slide 3: Origins of the idea…. 
	Slide 4: Project Rationale
	Slide 5: Introduction to the Tech Stack
	Slide 6: gnmic-cluster-chart
	Slide 7: WFO telemetry module tech stack
	Slide 8: WFO telemetry module tech stack
	Slide 9: gNMI(c)
	Slide 10: gNMI(c)
	Slide 11: gNMI(c)
	Slide 12: Tool choices
	Slide 13: OpenConfig
	Slide 14: WFO telemetry module tech stack
	Slide 15: Kubernetes
	Slide 16: WFO telemetry module tech stack
	Slide 17: Kafka
	Slide 18: WFO telemetry module tech stack
	Slide 19: Time Series Database (TSDB)
	Slide 20: WFO telemetry module tech stack
	Slide 21: Helm
	Slide 22: Deployment architecture
	Slide 23: Architecture diagram
	Slide 24: How does gNMIc work?
	Slide 25: What is the difference between gNMI and SNMP?
	Slide 26: How does a single gNMIc process work?
	Slide 27: How to handle scale?
	Slide 28: Scaling is complex, what do you run into?
	Slide 29: Scaling is complex, what do you run into?
	Slide 30: Gnmic-cluster-chart architecture
	Slide 31: Event driven architecture
	Slide 32: Event driven architecture
	Slide 33: gNMIc clustering process
	Slide 34: gNMIc clustering mode
	Slide 35: Quorum state management
	Slide 36: What are other things gNMIc can do?
	Slide 37: Helm chart architecture and overview
	Slide 38: The gnmic-cluster-chart
	Slide 39: Chart components
	Slide 40: Demo Time
	Slide 41: Demo components
	Slide 42: Wrap-up and Q&A
	Slide 43: Future work
	Slide 44: Deliverables
	Slide 45: Questions?

