

Exploring machine learning for DDoS mitigation

Jakub Man CESNET

Co-funded by the European Union

Requirements on ML

- Fast response to changing attacks
- Low false-positives
- Good performance

Autoencoder

- Artificial neural network
- Reconstructs it's input on output (X = Y)
- Minimizes reconstruction error RMSE(X,Y)
- Trained in unsupervised manner (only legitimate traffic)

Autoencoder - anomaly detection in packets

Experimenting with autoencoders

- Uses sFlow (sampled packets)
- Aggregates "windows" of traffic by source IPs
- Features typical for attacks are extracted from the windows
 - Timestamp, L4 ports, payload length, ...
- Result is a list of malicious IPs

	detected_after	detections_pos	detections_neg	pkts_allowed	pkts_denied	label
.126	0	0	50	78946	0	Benign
.231	0	0	50	105784	0	Benign
.190	0	0	50	134751	0	Benign
.233	0	0	49	85529	0	Benign
.59	0	0	50	146605	0	Benign
.42	0	0	50	121405	0	Benign
32	0	0	50	85362	0	Benign
.34	0	0	50	138748	0	Benign
.219	0	0	50	149444	0	Benign
.244	0	0	50	80100	0	Benign
5.215	0	0	50	93319	0	Benign
.132	0	0	50	85493	0	Benign
254	0	0	50	126989	0	Benign
.188	0	0	50	114494	0	Benign
118	0	0	50	122068	0	Benign
98		50	0	1749	87661	Benign
.120	0	0	49	113594	0	Benign
3.138		97	0	340	45844	Attack
.76		96	0	444	44993	Attack
9.246		96	0	487	45777	Attack
.196		97	0	458	55951	Attack
9.200		97	0	495	46725	Attack
9.55		97	0	509	48287	Attack
217		96	0	456	45142	Attack
.116		96	0	460	45094	Attack
99		96	0	495	44990	Attack
7.180		97	0	520	46630	Attack
3.73		95	0	515	45812	Attack
1.44		97	Ø	446	45611	Attack
.42		96	0	458	45682	Attack
9.79		96	0	492	47730	Attack
21		96	0	596	46220	Attack
2.166		91	0	509	45294	Attack
26		96	0	474	46067	Attack
.12		96	0	453	47535	Attack
.229		96	0	527	47879	Attack
167	6	06	A	40.9	47960	8 + + I-

Per-Source TP Communication Statistics

Autoencoder test results

RMSE for benign (green) and attack (red) packet

Threshold: 100; Recall: 0.99; Precision: 1.00; Accuracy: 0.99

How do we help networking professionals to configure this correctly?

Administrator

Autoencoder instance

Administrator

autoencoder_instance: detection_threshold: 50 name: "Primary instance" ip_set_id: 1

Autoencoder instance

Administrator

autoencoder: mode: learn ip_src: ['192.168.0.0/16'] vlan: 100 instance: "Primary instance"

Autoencoder instance

Administrator

autoencoder: mode: detect ip_src: ['10.50.0.0/16'] instance: "Primary instance"

Autoencoder instance

Autoencoder instance

Autoencoder instance

Detection (suspicious) traffic

Experimental integration

Exa	aFS Add		Add IPv6 Adr	TETRH API Key Add DDoS rule Acknowledgements Tutor	al Admin 🛪 🛛 🔍 cadmin@	evamn			mple Org.
IP set Main instance Active DDoS Protector rule:									
	IPv4 If	Pv6		View raw data	Search in IP set addresses		Active	Expired	All
	Source I		Source	10.44.80.1	whois]	Activity flact 5		
10) ranges		ports	10.44.80.2	whois)	ninutes]	Edit	
6	Any IPv4 Any IPv6	4 5	Any port	10.44.80.3	whois]			
5	Any IPv4 Any IPv6	4 5	Any port	10.44.80.4	whois]	Rule not active		
4	Any IPv4	4	Any port	10.44.80.5	whois NERD				
3	Any IPv6	1	Any port	10.44.80.6	whois)	No data		
0	Any IPv6	5	ing port	10.44.80.7	whois				
2	Any IPv4 Any IPv6	4 5	Any port	10.44.80.8	whois	F	Rule not active		
1	Any IPv4 Any IPv6	4 5	Any port	10.44.80.9	whois]	Rule not active		
				10.44.80.10	whois)			×
				« 1 2 »					
					Reload	se			

Conclusion

- Traditional methods are still needed as a pre-filter
- More complex attacks can be handled by machine learning
- Performance needs to be improved for production

Thank you

Any questions?

Jakub.Man@cesnet.cz ddp@cesnet.cz

Co-funded by the European Union