

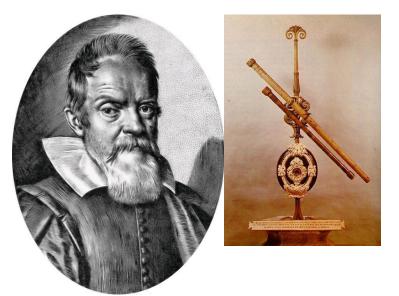
Research Infrastructures through energy crisis

Mirjam van Daalen PSI/LEAPS

https://leaps-initiative.eu/

LEAPS is the largest consortium of accerator based photon sources worldwide and further expanding its service to an interdisciplinary European user community

19 facilities - **16** institutions - **10** countries


- > **300** operating End Stations
- > **1.000.000** h beamtime /year
- > 5.000 publications/year
- > **15** spin off companies
- > **35.000** users from all EU & beyond researchers from all research area

Instruments development: 400 years of discoveries with "telescopes" and "microscopes"

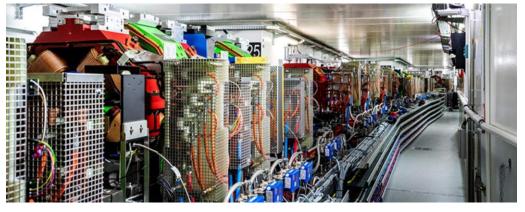
« Le seul véritable voyage ... ce ne serait pas d'aller vers de nouveaux paysages, mais d'avoir d'autres yeux, de voir l'univers avec les yeux d'un autre, de cent autres, de voir les cent univers que chacun d'eux voit, que chacun d'eux est. » Marcel Proust

Galileo Galilei

"The real voyage of discovery consists not in seeking new landscapes but in having new eyes" Marcel Proust

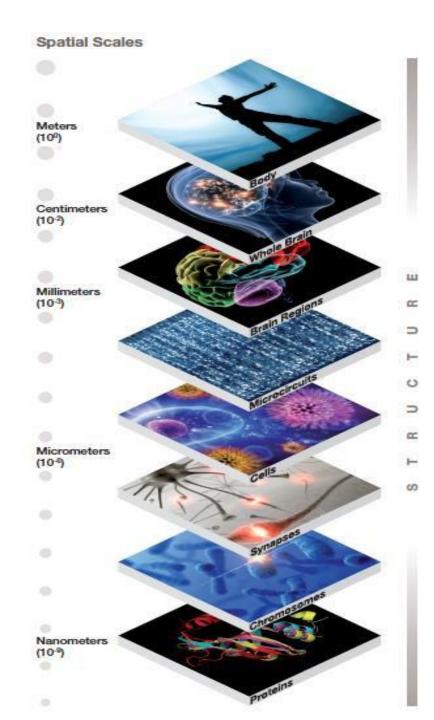
Accelerator driven applications to meet the needs of society

- Advanced instruments for basic and applied science
- Analysis of physical, chemical and biological materials
- Modification of physical, chemical and biological properties of matter
- Medical: diagnostics, treatment and targeted drug design
- Security: cargo scanning, IT hardware
- Environmental research
- Energy research



Imaging things on all length and time scales using accelerators,

e.g. latest X-Ray and computational technologies (developed at accelerators)



ESRF-Extremely Bright Source

European Synchrotron Radiation Facility (ESRF)

https://indico.esrf.fr/event/2/

Facility	Energy [GWh/year]	Operating time reduction
CERN LHC	1300 (2200 with FCC)	- 20% in 2022, 2023 (C-free energy)
DESY	153	
PSI	125	- 20%
~ all LEAPS RIs	~ 1050	

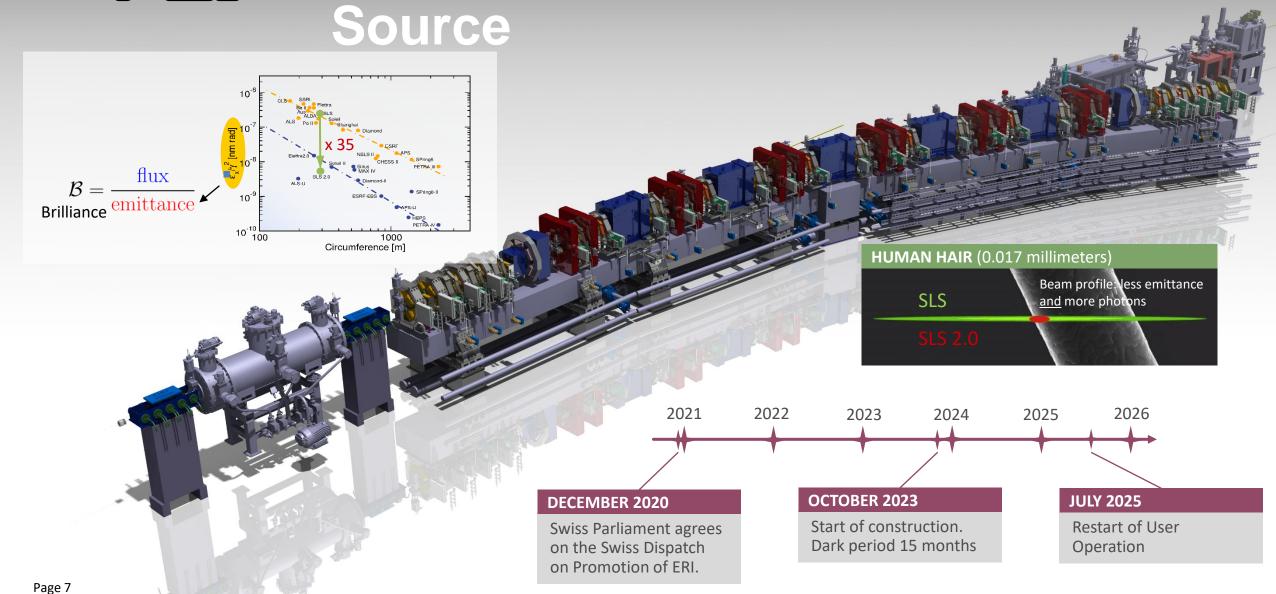
Total: 510'000

SNCF: 7'000

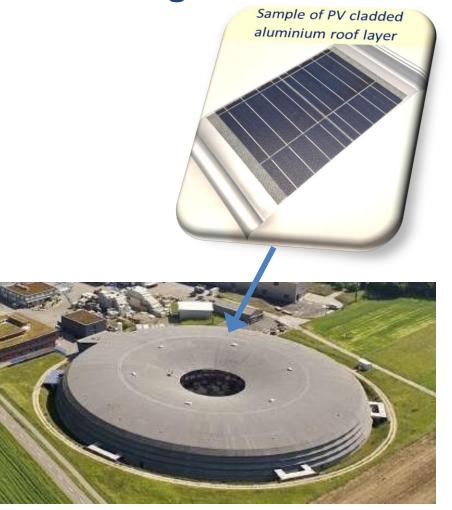
Total: 277'000

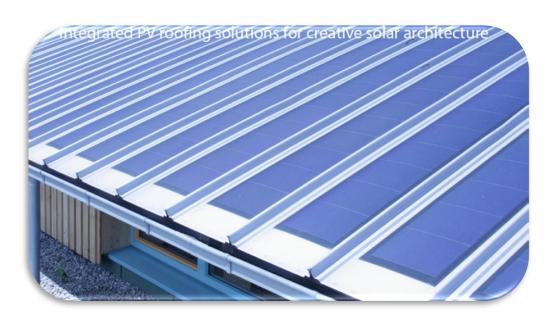
RENFE: 2'600

Total: 58'000


3′000 SBB:

PAUL SCHERRER INSTITUT




SLS 2.0: upscaling Swiss Light

During darktime SLS building roof will be refurbished

Power economy SLS2.0 vs. SLS incl. PV roof

More radiated X-ray power for users Less electricity consumption

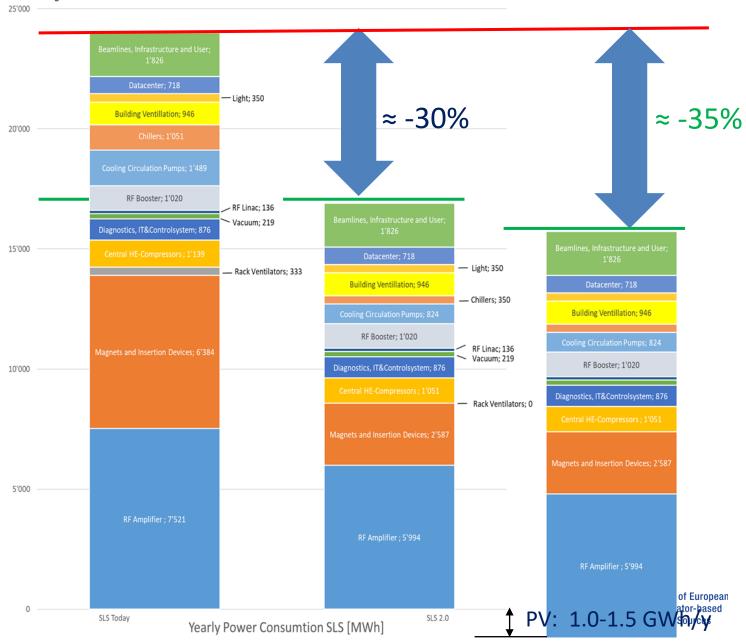
 $SLS \rightarrow SLS2.0$

 E_{e^-} 2.4 GeV \rightarrow 2.7 GeV

 P_{cp} 310 kW \rightarrow 365 kW

 W_{aloc}/v 24 GWh \rightarrow 17 GWh

 W_{elec} - W_{PV} / 17 GWh \rightarrow 15.5 GWh


Key savings:

Electromagnets → **permanent magnets**

Klystrons \rightarrow solid state amplifiers

Standard pumps → regulated pumps for cooling

Tar paper roof \rightarrow PV cladded roof

Example: LEAPS Facilities Investment Plans 2022-2026

- Given the initial investment, cutting operation time, we give up on our primary task of being the engine of innovation and progress
- Do we re-balance the weight of science and what it contributes to society?
 RIs are integral part of the solution for the challenges ahead

Activity (2022-2026)	Approximate numbers
No. of new beamlines being constructed or refurbished	70
Yearly/Total operational budget	800/4000 M€
Budget for investments	450 M€
Budget for the upgrade programs (partly already funded)	550 M€

Larger investments foreseen for the period 2027-2030

Our instruments are oversubscribed: delays and cost increases due to supply chain problems, inflation etc. will result in cancellation of projects, harming careers of PhDs and early career researchers

WHAT SHOULD BE DONE?

Stabilize the energy supply: RIs need long-term planning

- ✓ Sustainable, affordable, predictable
- ✓ Regulated tariff mechanism?
- ✓ Fluctuations in energy cost makes the planning unrealistic and hampers the scientific progress on challenges the society is facing, including energy production

Energy crisis is starting to hit Europe's big science labs

20 Sep 2022 | New

Research infrastructures are worried about the rising cost of running large scientific experiments and are looking for help with paying sky-high electricity bills. One lab has seen a 60% increase in its tariff this year By Florin Zubascu

ALBA synchrotron. Photo: albasynchrotron / Facebook

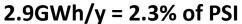
Leonid Rivkin, chair of LEAPS, said member organisations are still debating a course of action but they would welcome the European Commission becoming part of the talks. "The energy prices situation is too volatile for a longer-term planning, but it of course would be useful to discuss with the Commission an inclusive solution," said Rivkin.

LEAPS League of European Accelerator-based Photon Sources

"The strength of LEAPS lies in its staff and users, hailing from all European countries, beyond those which host the facilities."

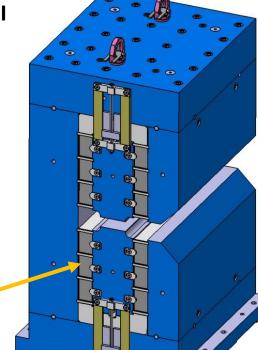
@leaps_initiative

https://leaps-initiative.eu



Innovation – Permanentmagnete für SLS 2.0

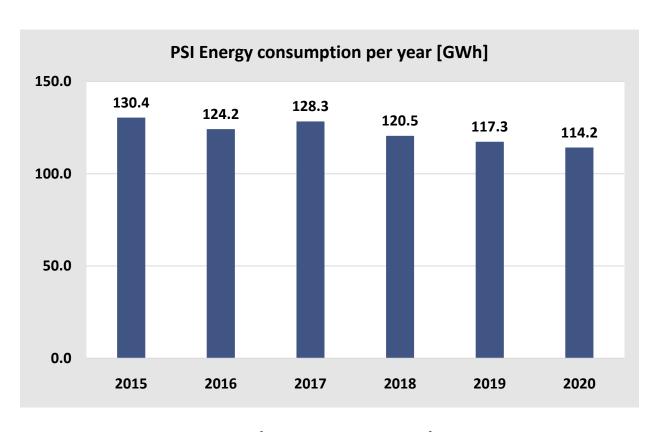
quadrupole


permanent magnet technology results in 425kW power savings of SLS 2.0 vs. SLS

dipole

- + zero power consumption
- + compact design
- + no cooling, no vibrations
- no remote tunability

NdFeB + NiFe wrapping



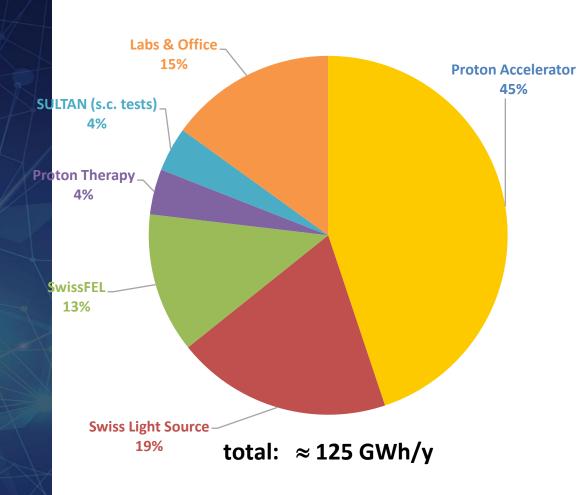
Unterstützt durch Pro-Kilowatt

Grid Energy demand at PSI is high but falling

PSI's energy consumption is dominated by the operation of the large-scale research facilities. The PSI accelerators are already among the most efficient in the world.

Peak power: 22.5 MW (all hydro power)

Europe	Research
CERN	1300 GWh
DESY (D)	175 GWh
PSI (CH)	125 GWh
ISIS (UK)	70 GWh


CH Govt.		
SBB	1600 GWh	
Swisscom	450 GWh	

Energy Consumption PSI

FACILITY CONSUMPTION

Innovation – Photovoltaik & Wärmerückgewinnung

Photovoltaik (aktuell 5'500 m²)		
installed peak power entire PSI	580 kW	
energy generated	0.56 GWh	
fraction of PSI consumption	0.4 %	

Potential: + 40'000 m², + 4.5 MW peak, + 3.5 % 10 Mio CHF investment

solar panels on a lab building @ PSI

Wärmerückgewinnung		
total heating energy PSI	12.9	
total ficating chergy 131	GWh/y	
recovered heat from facilities	6.5 GWh/y	
= fraction of needed energy	50 %	
energy cost saved	415 kCHF/y	

