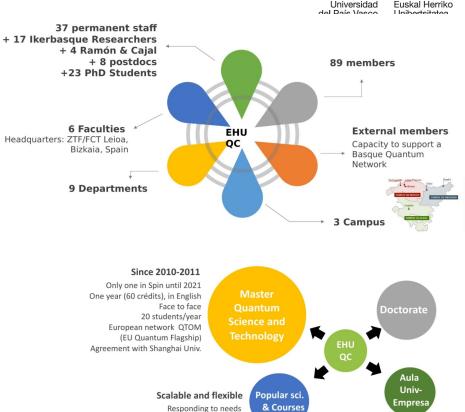


Adaptation of the I2Basque NREN to support quantum experimentation and deployment of QKD-based services

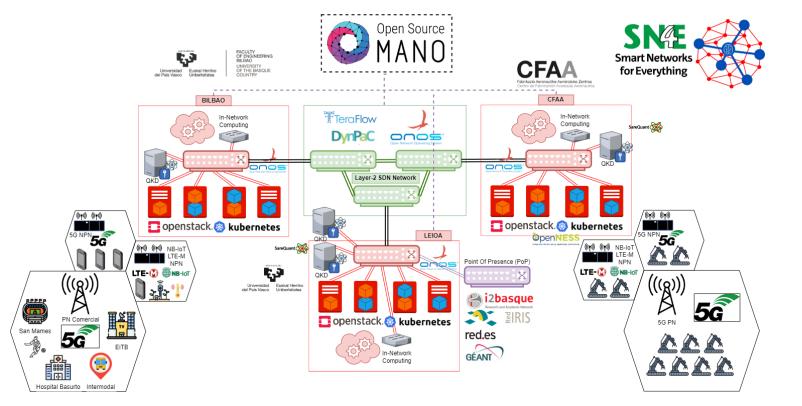
Eduardo Jacob – University of the Basque Country <eduardo.Jacob@ehu.eus>



1. Background

- EHU Quantum Center (<u>https://www.ehu.eus/quantum-center</u>)
 - Gathers EHU's quantum related activity (quantum sensors, quantum computing, communications, fibre manufacturing...)
 - Part of the Basque Country IKUR initiative.
- I2T research group (<u>https://i2t.ehu.eus/es</u>) brings:
 - Telecommunications engineering, expertise in networking
 - Software Defined Networking control planes
 - Cybersecurity
 - 5G deployments, operating infrastructures.
- Quantum Information and Communication Technologies
 - Great impact on society expected in medium-term future
 - Enabling technologies for the applications and communication networks of the future
 - Full support of National (Complementary Plan in Quantum Communications) and Regional (IKUR initiative) governments cofunded with NextGEN EU funds

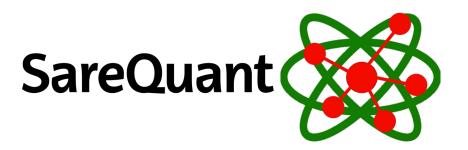
Need for platforms that enable quantum experimentation


GÉANT event: Celebrating The World Quantum Day - 14 April 2023

1. Background

research group

 Own experimental facility (in fact a part of the ESFRI infrastructure: SLICES-RI (Scientific Large Scale Infrastructure for Computing/Communication Experimental Studies) was the starting point

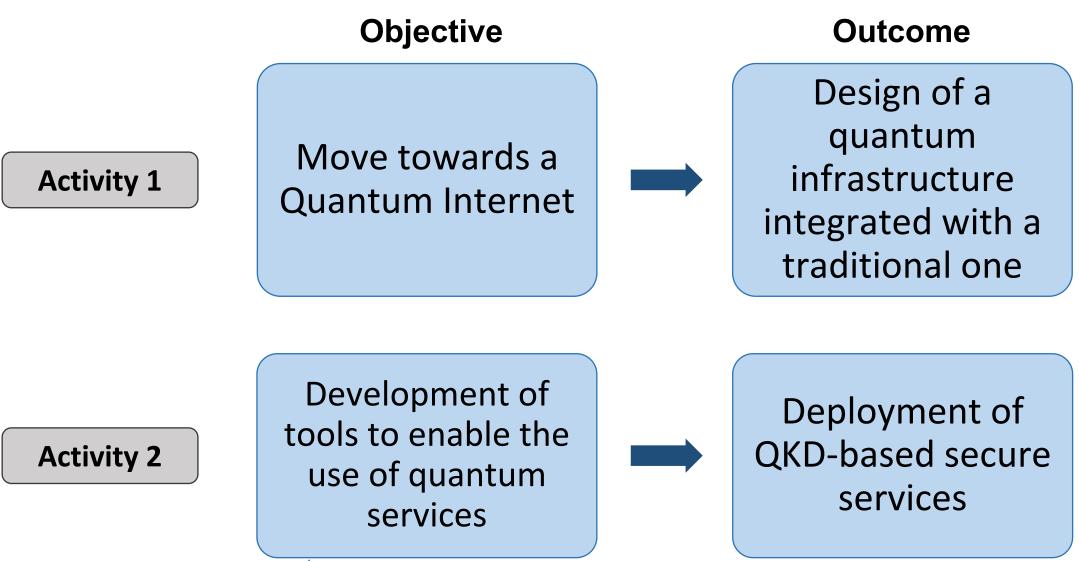

1. Background

research group

- Recent announcement: Basque Quantum (BasQ) initiative, that brings (between others):
 - A IBM Quantum System One computer, to be installed in Donostia-San Sebastian, the sixth 127-qubit IBM Quantum System One in the world, and the second in Europe, managed by Ikerbasque Basque Science Foundation.

Basque Foundation for Science

• Many reasons to advance towards experimenting in Quantum Communications.



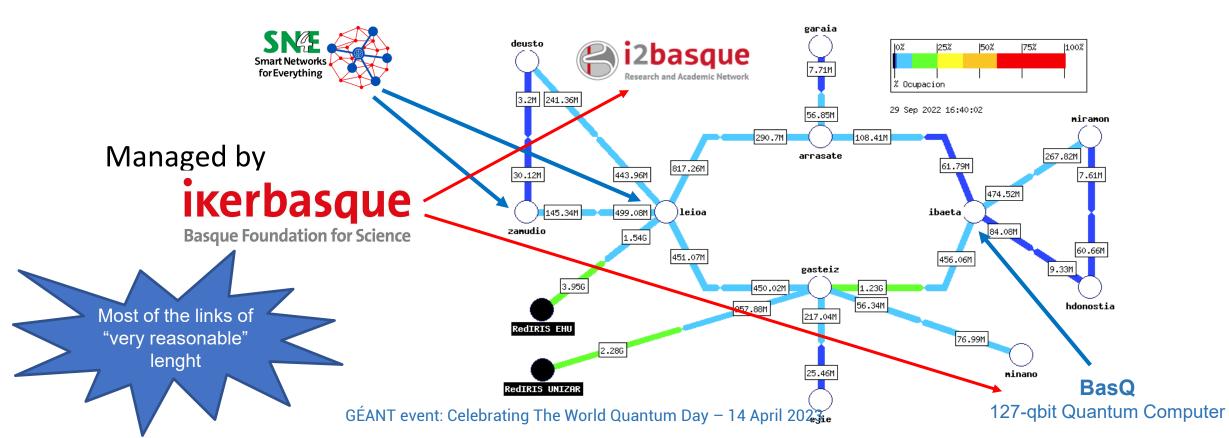
(Sare, is Basque word for Network)

2. SareQuant objectives and planned activities

GÉANT event: Celebrating The World Quantum Day – 14 April 2023

3. Activity 1 - Towards a Quantum Internet

- Quantum Internet
 - Integration of quantum technologies in traditional networks to enable quantum services
- IETF is working in the definition and design of QInternet
 - Deployment in different stages
- Other standardisation bodies are also working in this direction:
 - ETSI standards related to QKD
 - ITU-T recommendations related to QKD networks


			Target	
-	Quantum Internet Stage	Example Quantum Internet Use Cases	Characteristic	
	Stage-1 Trusted Repeater Networks	Secure comm setup using basic QKD	Trusted nodes	
	Stage-2 Prepare and Measure Networks	Secure comm setup using the QKD with end-to-end security	Prepare-and-measure capability	
	Stage-3 Entanglement distribution networks	Secure comm setup using entanglement-enabled QKD	Entanglement distribution	
	Stage-4 Quantum Memory Networks	Secure/blind guantum computing	Quantum memory	
	Stage-5 Fault- tolerant few qbit networks	Higher-Accuracy Clock synchronization	Fault tolerance	
-	Stage-6 Quantum Computing Networks	Distributed quantum computing	More qubits	

4. Activity 1 - Towards a Quantum Internet

• Design an infrastructure compatible with I2Basque (Basque Country NREN) traditional network to support experimentation with quantum communications, as an step to full support of quantum communication.

4. Activity 1 - Towards a Quantum Internet

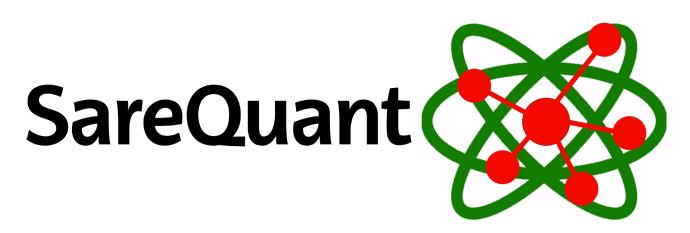
- Our objectives and expected results
 - Study how a traditional NREN infrastructure network can be adapted in order to support quantum experimentation.
 - Study the compatibility and integration of quantum technologies with traditional ones.
 - To have an architecture design for an infrastructure that can serve as a real testbed for quantum research.
 - Integrate SN4E in the experiment

5. Activity 2 – QKD-based secure services

- Objectives:
 - Deployment and integration of quantum technologies in real-world scenarios and applications (targeting 3 different technologies)
 - Understanding the technical implications for deploying secure quantum service
 - Laying the foundations for the development of future quantum services
- QKD: maturity, first stage towards QInternet
 - Appropriate technology to start working with quantum technologies and acquire knowledge
 - Starting point for moving on to more advanced stages of development in the future

5. Activity 2 – QKD-based secure services

- Secure service deployment based on QKD, integrating the technology into real operational solutions.
 - Use case: securing distributed data centers supporting virtualised environments to secure the network services that are deployed in the system.
 - Additional use case: integration in 5G/6G



6. Ongoing related research activities

- QFIRST (Quantum Devices) (2022-2023)
 - Integration of low level technologies in new telecom use cases.
 - Point to multipoint
 - Characterisation of needs for new use cases: Industry/Access networks for low cost equipment design.
- GN5-1 (2023-2025)
 - Participation in the quantum communication work package
 - The same two lines as here: Making Quantum Communication usable for NRENs and deploying services.

Adaptation of the I2Basque NREN to support quantum experimentation and deployment of QKD-based services

Eduardo Jacob – University of the Basque Country <eduardo.Jacob@ehu.eus>

MINISTERIO

DE CIENCIA

