on	Technology	Equipment

Introductio

Calibration

Configuration

Summary

White Rabbit: accurate time and frequency transfer over Ethernet networks

Maciej Lipiński

CERN BE-CEM-EDL Electronics Design & Low-Level Software section

Management and monitoring of time and frequency technologies 21 June 2022

Introduction	Technology 000000000	Equipment	Calibration 00	Configuration	Summary 00
Outline					

- 2 Technology
- 3 Equipment
- 4 Calibration
- **5** Configuration

Introduction	Technology 000000000	Equipment	Calibration	Configuration	Summary 00
Outline					

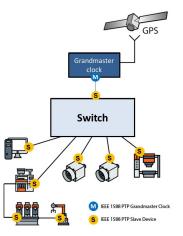
- Introduction
- 2 Technology
- 3 Equipment
- 4 Calibration
- 5 Configuration
- 6 Summary

Introduction ●○	Technology 000000000	Equipment	Calibration	Configuration	Summary 00
What is '	White Rab	bit?			

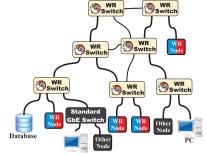
CERN and GSI initiative for control & timing

Introduction ●○	Technology 000000000	Equipment	Calibration 00	Configuration	Summary 00
What is	White Rat	obit?			

- CERN and GSI initiative for control & timing
- Based on well-established standards

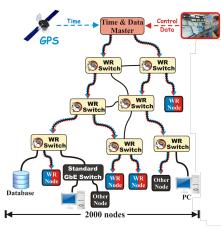

Introduction ••	Technology ooooooooo	Equipment	Calibration 00	Configuration	Summary 00
What is	White Ra	hhit?			

- what is white Raddit?
- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)


What is	White Ral	obit?			
Introduction ●○	Technology 000000000	Equipment	Calibration 00	Configuration	Summary 00

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)

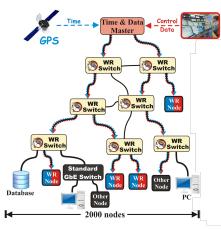
Introduction ●○	Technology ೦೦೦೦೦೦೦೦೦	Equipment	Calibration 00	Configuration	Summary 00
What is	White Rat	obit?			


- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)

•0								
Introduction	Technology	Equipment	Calibration	Configuration	Summary			

What is White Rabbit?

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Deterministic data transfer
 - Sub-ns synchronisation incorporated into IEEE 1588-2019 as High Accurcy(*)

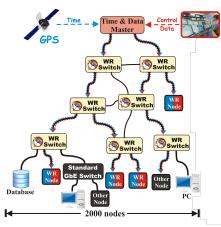


(*)home.cern/news/news/knowledge-sharing/white-rabbit-cern-born-technology-sets-new-global-standard

•0								
Introduction	Technology	Equipment	Calibration	Configuration	Summary			

What is White Rabbit?

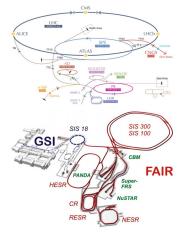
- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Deterministic data transfer
 - Sub-ns synchronisation incorporated into IEEE 1588-2019 as High Accurcy(*)
- Initial specs: links ≤10 km & ≤2000 nodes



(*)home.cern/news/news/knowledge-sharing/white-rabbit-cern-born-technology-sets-new-global-standard

•0								
Introduction	Technology	Equipment	Calibration	Configuration	Summary			

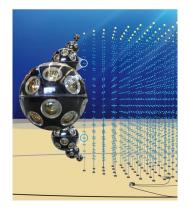
What is White Rabbit?


- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Deterministic data transfer
 - Sub-ns synchronisation incorporated into IEEE 1588-2019 as High Accurcy(*)
- Initial specs: links ≤10 km & ≤2000 nodes
- Open Source and commercially available

(*)home.cern/news/news/knowledge-sharing/white-rabbit-cern-born-technology-sets-new-global-standard

CERN's accelerator complex

CERN and GSI


CERN and GSI

• The Large High Altitude Air Shower Observatory

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange

Introduction	Technology	Equipment	Calibration	Configuration	Summary
	000000000	00000000	00	000000	00

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab
- National Time Labs in Netherlands (VSL), France (LNE-SYRTE), USA (NIST), UK (NPL) and Italy (INRIM)

National Institute of Standards and Technology

Introduction	Technology	Equipment	Calibration	Configuration	Summary
○●	ooooooooo	00000000	00		00

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab
- National Time Labs in Netherlands (VSL), France (LNE-SYRTE), USA (NIST), UK (NPL) and Italy (INRIM)
- ESA: European Space Agency for Galileo

Introduction	Technology 00000000	Equipment	Calibration 00	Configuration	Summary 00

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab
- National Time Labs in Netherlands (VSL), France (LNE-SYRTE), USA (NIST), UK (NPL) and Italy (INRIM)
- ESA: European Space Agency for Galileo

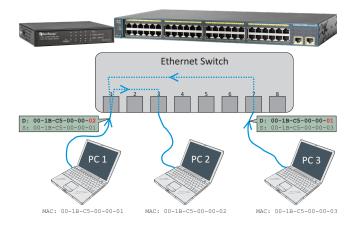
See user page: http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers

Introduction	Technology	Equipment	Calibration	Configuration	Summary 00
Outline					

- Introduction
- 2 Technology
- 3 Equipment
- 4 Calibration
- 5 Configuration
- 6 Summary

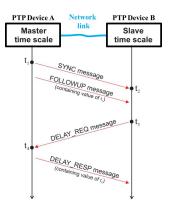
Based on

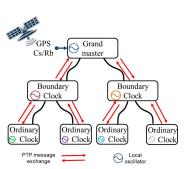
- Gigabit Ethernet over fibre
- IEEE 1588 Precision Time Protocol


Based on

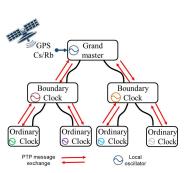
- Gigabit Ethernet over fibre
- IEEE 1588 Precision Time Protocol

Enhanced with

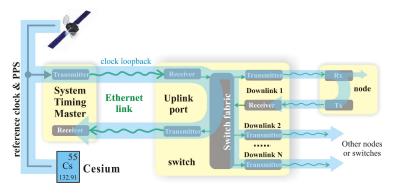

- Layer 1 syntonisation
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model


Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocolSimple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$

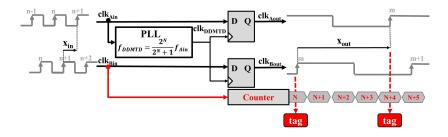

Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$
- Hierarchical network


Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4 t_1) (t_3 t_2)}{2}$
 - offset from master: $OFM = t_2 (t_1 + \delta_{ms})$
- Hierarchical network
- Shortcomings:
 - devices have free-running oscillators
 - frequency drift compensation vs. message exchange traffic
 - assumes symmetry of medium
 - timestamps resolution

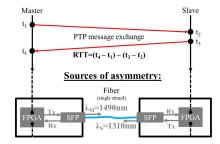
Lover 1 Systemication						
	00000000					
Introduction	Technology	Equipment	Calibration	Configuration	Summary	


- Layer 1 Syntonisation
 - Clock is encoded in the Ethernet carrier and recovered by the receiver chip
 - All network devices use the same physical layer clock
 - Clock loopback allows phase detection to enhance precision of timestamps

Digital Dual Mixer Time Difference (DDMTD)

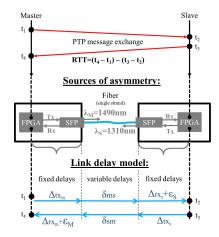
- Precise phase measurements in FPGA
- WR parameters:
 - clk_{in} = 62.5 MHz
 - *clk_{DDMTD}* = 62.496185 MHz (N=14)
 - *clk_{out}* = 3.814 kHz
- Theoretical resolution of 0.977 ps

Introduction 00	Technology ooooooooo	Equipment 000000000	Calibration	Configuration	Summary 00
Link dela	ay model				


• Correction of RTT for asymmetries

Introduction	Technology ooooooooo	Equipment	Calibration 00	Configuration	Summary 00
Link dela	ay model				

- Correction of RTT for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion

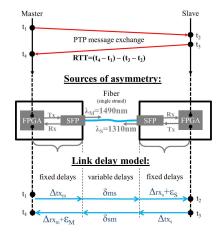


Introduction	Technology ooooo●ooo	Equipment	Calibration 00	Configuration	Summary 00
Link dela	ay model				

- Correction of RTT for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion
- Link delay model:
 - Fixed delays FPGA, PCB, SFP
 - Variable delays fibre:

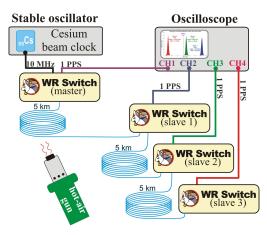
$$\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - 1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$

• Calibration procedure to find fixed delays and α


Introduction	Technology ooooo●ooo	Equipment	Calibration 00	Configuration	Summary 00
Link dela	y model				

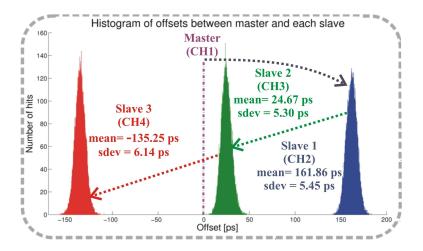
- Correction of RTT for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion
- Link delay model:
 - Fixed delays FPGA, PCB, SFP
 - Variable delays fibre:

$$\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - 1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$$

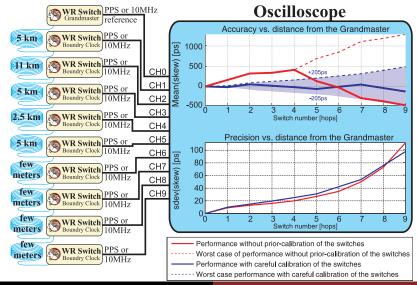

- Calibration procedure to find fixed delays and α
- Accurate offset from master (OFM):

$$\begin{split} \delta_{ms} &= \frac{1+\alpha}{2+\alpha} \left(RTT - \sum \Delta - \sum \epsilon \right) \\ OFM &= t_2 - \left(t_1 + \delta_{ms} + \Delta_{txm} + \Delta_{rxs} + \epsilon_S \right) \end{split}$$

	000000000					
Introduction	Technology	Equipment	Calibration	Configuration	Summary	


Out-of-the-box performance

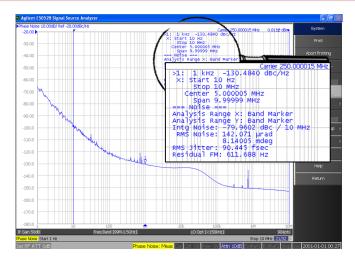
"White Rabbit: a PTP Application for Robust Sub-nanosecond Synchronization", M.Lipinski et al, ISPCS 2011


Out-of-the-box performance

"White Rabbit: a PTP Application for Robust Sub-nanosecond Synchronization", M.Lipinski et al, ISPCS 2011

Introduction	Technology	Equipment	Calibration	Configuration	Summary
	000000000				

Out-of-the-box performance

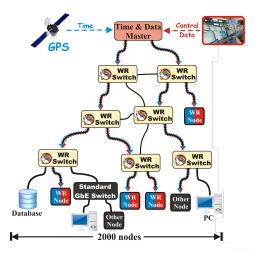

Maciej Lipiński

White Rabbit

14/38

Introduction	Technology ○○○○○○○●	Equipment	Calibration	Configuration	Summary 00
-		-			

State of the art performance

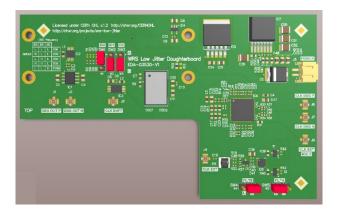


- Accuracy: <10 ps</p>
- Jitter: <100 fs RMS 10 Hz-10 MHz</p>

Introduction	Technology	Equipment	Calibration 00	Configuration	Summary 00
Outline					

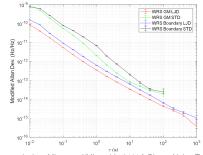
- Introduction
- 2 Technology
- 3 Equipment
- 4 Calibration
- 5 Configuration
- 6 Summary

Introduction	Technology 000000000	Equipment •oooooooo	Calibration 00	Configuration	Summary 00
Typical \	WR netwo	rk			



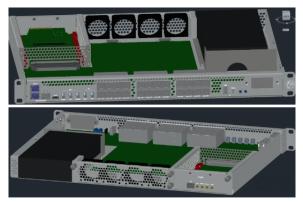
- Central element of WR network
- 18 port gigabit Ethernet switch with WR features
- Default optical transceivers: up to 10km, single-mode fibre
- Fully open-source, commercially available from 4 companies

1	Level little ware viewet left 20 evolte le									
00	000000000	00000000	00	000000	00					
Introduction	Technology	Equipment	Calibration	Configuration	Summary					

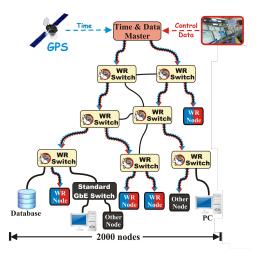


Uses external PLL and better VCTCXO in a daughter card or directly integrated in the main switch PCB to improve short and long-term stability.

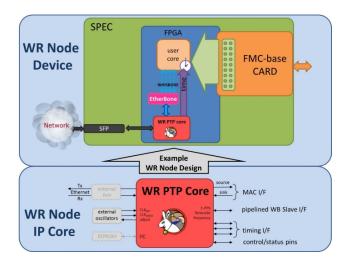
Introduction	Technology	Equipment	Calibration	Configuration	Summary
00	000000000	00000000	00		00
Switch	types and [•]	their perfo	rmance		


WR Switch type	Ports 1-12 (LPDC ports)		Ports 13-18	
	Accuracy	Precision	Accuracy	Precision
"Standard"	<10 ps	<10 ps	<100 ps	<10 ps
"Low-jitter"	<10 ps	<1 ps	<100 ps	<1 ps

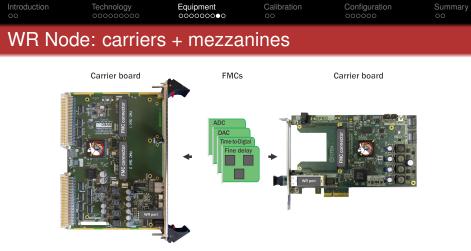
Measurement device: Microsemi/Microchip 3120A Phase Noise Test Probe


	itob v 4 u	ndar daval	opmont		
Introduction	Technology	Equipment	Calibration 00	Configuration	Summary 00

WR Switch v4 - under development


- Up to 24 port, 1 and 10 Gbps, with WR features
- Redundant & hot-swappable power supply and fans
- Expansion board
- Fully open design

Introduction	Technology	Equipment 000000000	Calibration	Configuration	Summary 00
Typical V	VR networ	rk			



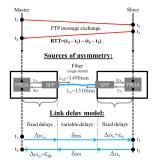
Introduction	Technology 000000000	Equipment oooooo●oo	Calibration	Configuration	Summary 00

WR Node: WR PTP Core

- All carrier cards are equipped with a White Rabbit port
- All carrier cards instantiate WR PTP Core
- Mezzanines can use the accurate clock signal and timecode (synchronous sampling clock, trigger time tag, ...)

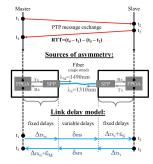
Introduction	Technology 000000000	Equipment	Calibration	Configuration	Summary 00
Outline					

- Introduction
- 2 Technology
- 3 Equipment
- 4 Calibration
- 5 Configuration
- 6 Summary


Introduction	Technology 000000000	Equipment	Calibration ●○	Configuration	Summary 00
WR Ca	libration - v	vhy			

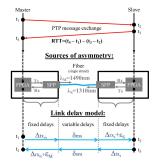
- Ensures sub-ns accuracy between
 - The PPS output of the WR Grandmaster, and
 - The PPS outputs of the WR Devices connected (directly/indirectly) to the WR Grandmaster

Introduction	Technology	Equipment	Calibration ●○	Configuration	Summary 00
WR Ca	libration - v	why			


- Ensures sub-ns accuracy between
 - The PPS output of the WR Grandmaster, and
 - The PPS outputs of the WR Devices connected (directly/indirectly) to the WR Grandmaster
- Determines the value of
 - Ingress/Egress latency (fixed delays)
 - Relative delay coefficient for fiber type used (<u>α</u>)

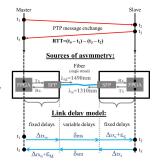
Introduction	Technology	Equipment	Calibration ●○	Configuration	Summary 00
WR Ca	libration - v	why			

WR Calibration - why


- Ensures sub-ns accuracy between
 - The PPS output of the WR Grandmaster, and
 - The PPS outputs of the WR Devices connected (directly/indirectly) to the WR Grandmaster
- Determines the value of
 - Ingress/Egress latency (fixed delays)
 - Relative delay coefficient for fiber type used (<u>α</u>)
- Must be performed for
 - Each WR device type, its port, SFP type, release Note: can be performed for each device/SFP instance to increase accuracy
 - Each fiber type deployed

Introduction	Technology	Equipment	Calibration ●○	Configuration	Summary 00
WR Ca	libration - v	why			

WR Calibration - why


- Ensures sub-ns accuracy between
 - The PPS output of the WR Grandmaster, and
 - The PPS outputs of the WR Devices connected (directly/indirectly) to the WR Grandmaster
- Determines the value of
 - Ingress/Egress latency (fixed delays)
 - Relative delay coefficient for fiber type used (<u>α</u>)
- Must be performed for
 - Each WR device type, its port, SFP type, release Note: can be performed for each device/SFP instance to increase accuracy
 - Each fiber type deployed
- Described in WR Calibration procedure v1.1

Introduction	Technology	Equipment	Calibration ●○	Configuration	Summary 00
WR Ca	libration - v	why			

WR Calibration - why

- Ensures sub-ns accuracy between
 - The PPS output of the WR Grandmaster, and
 - The PPS outputs of the WR Devices connected (directly/indirectly) to the WR Grandmaster
- Determines the value of
 - Ingress/Egress latency (fixed delays)
 - Relative delay coefficient for fiber type used (<u>α</u>)
- Must be performed for
 - Each WR device type, its port, SFP type, release Note: can be performed for each device/SFP instance to increase accuracy
 - Each fiber type deployed
- Described in WR Calibration procedure v1.1
- Calibration values provided for
 - WR Switch releases
 - WR Node releases (reference designs)

Introduction	Technology ೦೦೦೦೦೦೦೦೦	Equipment	Calibration ●○	Configuration	Summary 00
	libration - v	why			

Ensures sub-ns accuracy between

λαιιστατιστ

- The PPS output of the WR Grandmaster, and
- The PPS outputs of the WR Devices connected (directly/indirectly) to the WR Grandmaster
- Determines the value of
 - Ingress/Egress latency (fixed delays)
 - Relative delay coefficient for fiber type used (<u>α</u>)
- Must be performed for
 - Each WR device type, its port, SFP type, release Note: can be performed for each device/SFP instance to increase accuracy
 - Each fiber type deployed
- Described in WR Calibration procedure v1.1
- Calibration values provided for
 - WR Switch releases
 - WR Node releases (reference designs)
- Useful
 - Which SFP and fibre type to use for WR
 - Calibration

PTP message exchange

RTT=(t₄-t₁)-(t₃-t₂) Sources of asymmetry:

Fiber

=1490nm

Link delay model:

variable delays

δms

δsm

fixed delays

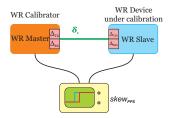
 $\Delta_{TX} + \varepsilon_{s}$

 Δtx ,

fixed delays

Atx.

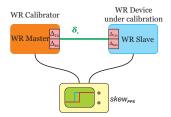
 $\Delta rx_m + \mathcal{E}_M$


λ_=1310nm

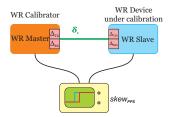
Slave

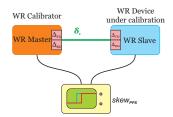
Master

Introduction	Technology ೦೦೦೦೦೦೦೦೦	Equipment	Calibration ○●	Configuration	Summary 00
WR Ca	libration - h	าดพ			

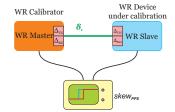

- In-lab procedure, requires
 - WR Device, SFP, fiber types to be used
 - Oscilloscope or time interval counter

Introduction	Technology	Equipment	Calibration ○●	Configuration	Summary 00
WR Ca	libration - h				


- In-lab procedure, requires
 - WR Device, SFP, fiber types to be used
 - Oscilloscope or time interval counter
- Entails
 - Access to console of WR devices
 - Interconnection using different fiber lenghts
 - Measurement of skew between PPS outputs


Introduction	Technology 000000000	Equipment	Calibration ○●	Configuration	Summary 00
WR Ca	libration - h				

- In-lab procedure, requires
 - WR Device, SFP, fiber types to be used
 - Oscilloscope or time interval counter
- Entails
 - Access to console of WR devices
 - Interconnection using different fiber lenghts
 - Measurement of skew between PPS outputs
- Calibration of Ingress/Egress latency (fixed delays)
 - Relative calibration against a (golden) calibrator
 - Golden calibrator at CERN
 - Procedure to obtain local calibrator


Introduction 00	Technology	Equipment	Calibration ○●	Configuration	Summary 00
WR Ca	libration - h	าดพ			

- In-lab procedure, requires
 - WR Device, SFP, fiber types to be used
 - Oscilloscope or time interval counter
- Entails
 - Access to console of WR devices
 - Interconnection using different fiber lenghts
 - Measurement of skew between PPS outputs
- Calibration of Ingress/Egress latency (fixed delays)
 - Relative calibration against a (golden) calibrator
 - Golden calibrator at CERN
 - Procedure to obtain local calibrator
- Relative delay coefficient for fiber type used (α)
 - Absolute calibration, i.e. no calibrator
 - Type of deployed fiber needs to be known
 - Assumes no active elements (amplifiers)

Introduction	Technology	Equipment	Calibration ○●	Configuration	Summary 00
WR Ca	libration - h	าดพ			

- In-lab procedure, requires
 - WR Device, SFP, fiber types to be used
 - Oscilloscope or time interval counter
- Entails
 - Access to console of WR devices
 - Interconnection using different fiber lenghts
 - Measurement of skew between PPS outputs
- Calibration of Ingress/Egress latency (fixed delays)
 - Relative calibration against a (golden) calibrator
 - Golden calibrator at CERN
 - Procedure to obtain local calibrator
- Relative delay coefficient for fiber type used (α)
 - Absolute calibration, i.e. no calibrator
 - Type of deployed fiber needs to be known
 - Assumes no active elements (amplifiers)
- In-situ calibration of relative delay coefficient
 - Experimental: Insitu determination of alpha
 - Active standardization: 1588f project

Introduction	Technology 000000000	Equipment	Calibration 00	Configuration	Summary 00
Outline					

- Introduction
- 2 Technology
- 3 Equipment
- 4 Calibration
- 5 Configuration
 - 6 Summary

Introduction	Technology 000000000	Equipment	Calibration	Configuration ●00000	Summary 00
Manage	ement of W	/R network	٢S		

• White Rabbit is an extension of Ethernet

Introduction	Technology 000000000	Equipment	Calibration	Configuration ●00000	Summary 00
Manage	ement of W	/R networl	٢S		

- White Rabbit is an extension of Ethernet
- It implements standard protocols and tools (*):
 - Simple Network Management Protocol (SNMP)
 - Syslog
 - Link Layer Discovery Protocol (LLDP)
 - Kerberos-based authentication

			0	00000	00
Management	of WR ne	etworks			

- White Rabbit is an extension of Ethernet
- It implements standard protocols and tools (*):
 - Simple Network Management Protocol (SNMP)
 - Syslog
 - Link Layer Discovery Protocol (LLDP)
 - Kerberos-based authentication
- It can be debugged using standard tools:
 - Wireshark
 - Tcpdump
 - Professional Ethernet testers

Introduction	Technology	Equipment	Calibration	Configuration ●00000	Summary 00			
Manage	Management of WR networks							

- White Rabbit is an extension of Ethernet
- It implements standard protocols and tools (*):
 - Simple Network Management Protocol (SNMP)
 - Syslog
 - Link Layer Discovery Protocol (LLDP)
 - Kerberos-based authentication
- It can be debugged using standard tools:
 - Wireshark
 - Tcpdump
 - Professional Ethernet testers
- WR Switch configuration:

Introduction	Technology	Equipment	Calibration 00	Configuration ●ooooo	Summary 00

Management of WR networks

- White Rabbit is an extension of Ethernet
- It implements standard protocols and tools (*):
 - Simple Network Management Protocol (SNMP)
 - Syslog
 - Link Layer Discovery Protocol (LLDP)
 - Kerberos-based authentication
- It can be debugged using standard tools:
 - Wireshark
 - Tcpdump
 - Professional Ethernet testers

WR Switch configuration:

 Recommended for large networks: download dot-config (*) file from server

```
CONFIG DOTCOMP PM VERSION-16.0.1
   CONTO_DOTCOM__MM_VENSION-5.0.1
CONTO_DOTCOM__MM_VENSION-5.4*
CONTO_DOTCOM__MM_VENSION-5.4*
CONTO_DOTCOM__MMCG*em_time=2022-05-06+14:14:45;gen_umer=mlipinsk;md5sum=7easebed212b48a0c812b96170c5bfbc;
   # CONFIG DOTCONF SOURCE REMOTE is not set
a CONFIG DOTCOMF SOURCE FORMET is not set

GURIE DOTCOMF SOURCE FARCE (HEAD)

a CONFIG DOTCOMF SOURCE FARCE (HEAD)

a CONFIG DOTCOMF SOURCE FORMET NOT SET

CONFIG LAMPECT SOURCE (HEAD)

   # Local Network Configuration
   CONFIG ETHS DHCP-1
   # CONFIG ETHE DHCP ONCE is not set
# CONFIG ETHE STATIC is not set
   CONFIG HOSTNAME DHCP-
   # CONFIG HOSTNAME STATIC is not set
       CONFIG ROOT_ACCESS_DISABLE is not set
Compto La Securita Bacel - Alexand, encode encode

Compto La Securita Bacel - Intel Bacel La encode encode

Compto La Priller Compto La encode encode

Compto La Priller Compto La encode encode

Compto La Priller Compto La encode encode

Compto La Priller Compto La encode enc
CONFIG_AUTH_KRESS=y
CONFIG_AUTH_KRESS_SERVER="CERN.CH
CONFIG REOT PHD IS ENCRYPTED-y
CONFIG REOT PHD CYPHER-*SISYSMMCh4sqlActlhjJHtYuw3C22YUM1*
CONFIG NTP SERVER-*1p.time-1.cern.ch*
       CONFIG_LOCAL_SYSLOG_FILE="/tmp/syslog"
CONFIG_REMOTE_SYSLOG_FILE="/tmp/syslog"
CONFIG_REMOTE_SYSLOG_SERVER="cs-ccr-testbed4"
CONFIG_REMOTE_SYSLOG_UDD===
   CONFIG MRS LOG HAL-"daemon.info"
CONFIG MRS LOG LEVEL HAL="6"
CONFIG MRS LOG TU-"daemon.info"
   CONFIG WRS LDG LEVEL RTU="6"
CONFIG WRS LDG PTP="daemon.info
   CONFIG WRS LOG SMMPD="Svd
CONFIG_NRS_LDG_MONIT="syslog"
- dat-canfig 1/5066_0%
```


Introduction	Technology	Equipment	Calibration	Configuration	Summary

Management of WR networks

- White Rabbit is an extension of Ethernet
- It implements standard protocols and tools (*):
 - Simple Network Management Protocol (SNMP)
 - Syslog
 - Link Layer Discovery Protocol (LLDP)
 - Kerberos-based authentication
- It can be debugged using standard tools:
 - Wireshark
 - Tcpdump
 - Professional Ethernet testers

WR Switch configuration:

- Recommended for large networks: download dot-config (*) file from server
- Recommended for small networks: CLI (wrs_menuconfig*)

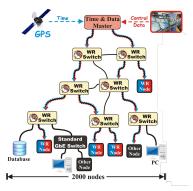
are both	yn meighet the menu, «fnter» selecta sabmenus>> (o' empty sabmenus>). Highlighted latter: myn, Fressing Y*i incluéen, «He wecluées, «He medularises features. Press «Escentsce to exit, «7», «/* fer Search. Legend: [*] built-in [] excluéed «He module « = medule capable
	HAMAGECONSTRUCTS HAMAGECONSTRUCTS Intermediate and the second of the se
	Solucto - Exit Help Save Load -

Introduction	Technology	Equipment	Calibration	Configuration	Summary			
	000000000	000000000	00	●00000	00			
Manager	Management of WR networks							

- White Rabbit is an extension of Ethernet
- It implements standard protocols and tools (*):
 - Simple Network Management Protocol (SNMP)
 - Syslog
 - Link Layer Discovery Protocol (LLDP)
 - Kerberos-based authentication
- It can be debugged using standard tools:
 - Wireshark
 - Tcpdump
 - Professional Ethernet testers

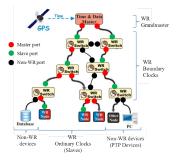
WR Switch configuration:

- Recommended for large networks: download dot-config (*) file from server
- Recommended for small networks: CLI (wrs_menuconfig*)
- Possible but discourage: web interface



WR network configuration

- Device:
 - Management port IP
 - Enable/configure services (SNMP, Syslog, LLDP...)
- Data plane:
 - Virtual LANs (VLANs)
 - Forwarding options
 - No support for advanced protocols: (R)STP, (M)SRP
- Time plane:
 - PTP-generic
 - WR-specific

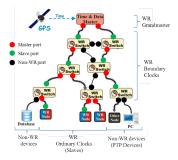


Device role:

Grandmaster - 1 PPS & 10 MHz inputs required

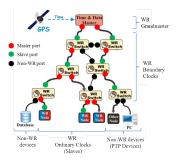
Useful: Note on using WR Switch in Grandmaster mode

- Free-running GM 1 PPS & 10 MHz NOT required
- Boundary Clock one of the ports is Slave

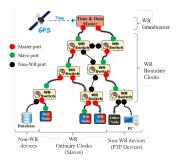


Device role:

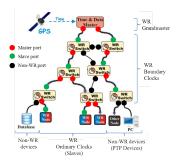
Grandmaster - 1 PPS & 10 MHz inputs required


- Useful: Note on using WR Switch in Grandmaster mode
- Free-running GM 1 PPS & 10 MHz NOT required
- Boundary Clock one of the ports is Slave
- LeapSeconds & NTP servers

- Device role:
 - Grandmaster 1 PPS & 10 MHz inputs required Useful: Note on using WB Switch in Grandmaster mode
 - Free-running GM 1 PPS & 10 MHz NOT required
 - Boundary Clock one of the ports is Slave
- LeapSeconds & NTP servers
- Port roles:
 - Automatic non-seamless recovery using BMCA
 - Static no risk of "rogue" Grandmaster

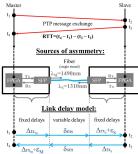


Introduction	Technology ೦೦೦೦೦೦೦೦೦	Equipment	Calibration 00	Configuration oo●ooo	Summary 00


- Device role:
 - Grandmaster 1 PPS & 10 MHz inputs required Useful: Note on using WB Switch in Grandmaster mode
 - Free-running GM 1 PPS & 10 MHz NOT required
 - Boundary Clock one of the ports is Slave
- LeapSeconds & NTP servers
- Port roles:
 - Automatic non-seamless recovery using BMCA
 - Static no risk of "rogue" Grandmaster
- Mapping and VLANs:
 - IEEE802.3 VLAN support
 - UDP/IP no VLAN support, need IP on wriX

Useful: Synchronizing WR master and a non-WR node using PTP

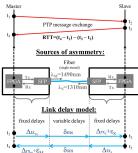
- Device role:
 - Grandmaster 1 PPS & 10 MHz inputs required Useful: Note on using WB Switch in Grandmaster mode
 - Free-running GM 1 PPS & 10 MHz NOT required
 - Boundary Clock one of the ports is Slave
- LeapSeconds & NTP servers
- Port roles:
 - Automatic non-seamless recovery using BMCA
 - Static no risk of "rogue" Grandmaster
- Mapping and VLANs:
 - IEEE802.3 VLAN support
 - UDP/IP no VLAN support, need IP on wriX
 - Useful: Synchronizing WR master and a non-WR node using PTP
- Profile:
 - WR compatible with Default PTP Profile
 - Default PTP "standard" PTP
 - none



Introduction	Technology 000000000	Equipment	Calibration 00	Configuration ○○○●○○	Summary 00
					6

WR-specific time plane configuration

- Ingress/Egress latency (Fixed delays)
 - Value specific to a device/port/firmware
 - Automatically chosen from database based on SFP type
 - Values available for typically used SFPs (1000BASE-BX10, single strand & mode, 1490/1310mm)
 - WR Switch
 - Calibrated out-of-the box for typical SFPs
 - SFP database in dot-config file
 - WR Node
 - Calibrated for reference designs for typical SFPs
 - SFP database needs to be configured via shell or snmp



Introduction	Technology ೦೦೦೦೦೦೦೦೦	Equipment	Calibration 00	Configuration	Summary 00

WR-specific time plane configuration

- Ingress/Egress latency (Fixed delays)
 - Value specific to a device/port/firmware
 - Automatically chosen from database based on SFP type
 - Values available for typically used SFPs (1000BASE-BX10, single strand & mode, 1490/1310mm)
 - WR Switch
 - Calibrated out-of-the box for typical SFPs
 - SFP database in dot-config file
 - WR Node
 - Calibrated for reference designs for typical SFPs
 - SFP database needs to be configured via shell or snmp
- Fiber's relative delay coefficient (α)
 - Calibration value available for fiber type used at CERN
 - WR Switch database in dot-config file
 - WR Node database configured via shell or snmp

Useful: Which SFP and fibre type to use for WR

Introduction	Technology ೦೦೦೦೦೦೦೦೦	Equipment	Calibration 00	Configuration 000000	Summary 00

WR-specific time plane configuration

- Ingress/Egress latency (Fixed delays)
 - Value specific to a device/port/firmware
 - Automatically chosen from database based on SFP type
 - Values available for typically used SFPs (1000BASE-BX10, single strand & mode, 1490/1310mm)
 - WR Switch
 - Calibrated out-of-the box for typical SFPs
 - SFP database in *dot-config* file
 - WR Node
 - Calibrated for reference designs for typical SFPs
 - SFP database needs to be configured via shell or snmp
- Fiber's relative delay coefficient (α)
 - Calibration value available for fiber type used at CERN
 - WR Switch database in dot-config file
 - WR Node database configured via shell or snmp
- Values for more SFPs and fiber types can be determined using WR calibration and added easily to configuration

Useful: Which SFP and fibre type to use for WR

PTP message exchange

 $RTT = (t_1 - t_2) - (t_2 - t_3)$

Sources of asymmetry:

(single strand) =1490nm

Link delay model:

variable delays

δms

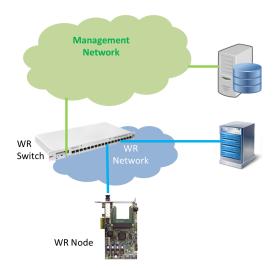
δsm

fixed delays

 $\Delta rx_s + \varepsilon_s$

 Δtx

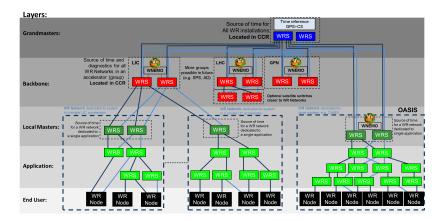
fixed delays


Δtx.,

 $\Delta rx_m + E_M$

Master

Slave


Introduction	Technology 000000000	Equipment 000000000	Calibration	Configuration ○○○○●○	Summary 00
WR Netw	vork vs. N	lanageme	nt Netwo	rk	

Explained in subsequent presnetation

Introduction	Technology 00000000	Equipment	Calibration 00	Configuration ○○○○○●	Summary 00
Archite	cture WR r	network at	CERN		

WR Switch

Active fiber Ethernet link

Backup fiber Ethernet link

Copper Ethernet link

Introduction	Technology 000000000	Equipment	Calibration 00	Configuration	Summary 00
Outline					

- Introduction
- 2 Technology
- 3 Equipment
- 4 Calibration
- 5 Configuration

Introduction	Technology 000000000	Equipment	Calibration	Configuration	Summary ●○
Summar	у				

• Ethernet-based synchronisation

Introduction	Technology 000000000	Equipment	Calibration	Configuration	Summary ●○
Summar	У				

- Ethernet-based synchronisation
- <1 ns accuracy and <10 ps precision out-of-the-box

Introduction	Technology 000000000	Equipment	Calibration	Configuration	Summary ●○
Summar	у				

- Ethernet-based synchronisation
- <1 ns accuracy and <10 ps precision out-of-the-box
- Sub-10 ps accuracy and sub-100 fs precision achievable

Introduction	Technology	Equipment	Calibration 00	Configuration	Summary ●○
Summa	ry				

- Ethernet-based synchronisation
- I ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open-source with commercial support

Introduction	Technology 000000000	Equipment	Calibration 00	Configuration	Summary ●○
Summa	ry				

- Ethernet-based synchronisation
- I ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open-source with commercial support
- Standard-based and standard-extending

Introduction	Technology 000000000	Equipment	Calibration 00	Configuration	Summary ●○
Summa	ry				

- Ethernet-based synchronisation
- I ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open-source with commercial support
- Standard-based and standard-extending
- Included in the revised IEEE 1588

Introduction	Technology ooooooooo	Equipment	Calibration 00	Configuration	Summary ●○
Summa	ry				

- Ethernet-based synchronisation
- I ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open-source with commercial support
- Standard-based and standard-extending
- Included in the revised IEEE 1588
- A versatile solution for general control and data acquisition

Introduction	Technology ooooooooo	Equipment	Calibration 00	Configuration	Summary ●○
Summa	ry				

- Ethernet-based synchronisation
- I ns accuracy and <10 ps precision out-of-the-box</p>
- Sub-10 ps accuracy and sub-100 fs precision achievable
- Open-source with commercial support
- Standard-based and standard-extending
- Included in the revised IEEE 1588
- A versatile solution for general control and data acquisition
- Showcase of technology transfer

Introduction 00	Technology 000000000	Equipment 000000000	Calibration	Configuration	Summary ⊙●
Thanks!					

WR Project page: http://www.ohwr.org/projects/white-rabbit/wiki

Backup	slides			
Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR

Backup slides

Applications	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR
Outline				

- 8 Standardisation
- 9 WR Switch Internals
- WR Performance Improvements
- 11 Determinism in WR

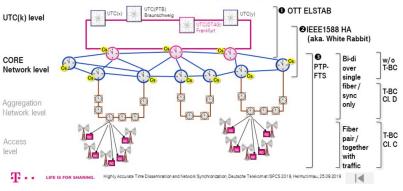
WR applications in science and beyond

- Time & frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer

Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR
0000000000	00		0000	000000

Time & frequency transfer

• Widely used/evaluated by National Time Labs (5 countries)

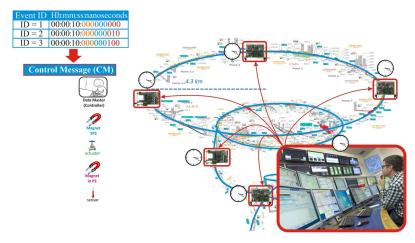


Time & frequency transfer

- Widely used/evaluated by National Time Labs (5 countries)
- Evaluated by Deutsche Telekom

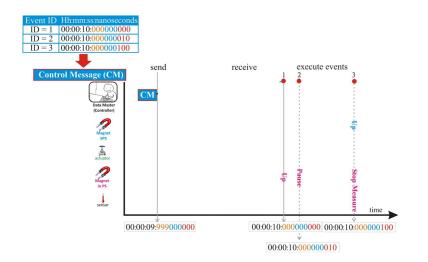
High Accuracy Time Dissemination

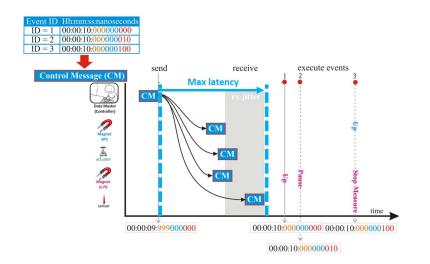

4. Application of Time Transfer Methods and Network Sync Level


ISPCS keynote Highly Accurate Time Dissemination & Network Synchronisation, Helmut Imlau, Deutsche Telekom

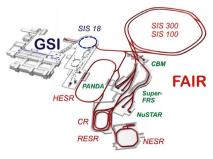
Maciej Lipiński White Rabbit

Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR


Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR
000000000000000000000000000000000000000				

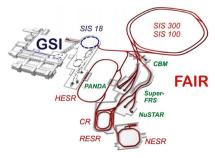

.

Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR
<u> </u>				

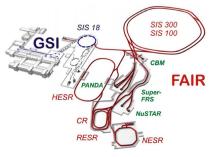


Applications	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR

Time-based control - example application

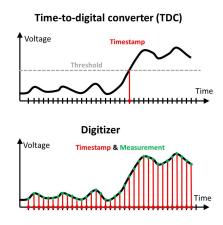

 GSI Helmholtz Centre for Heavy Ion Research in Germany

Time-based control - example application


- GSI Helmholtz Centre for Heavy Ion Research in Germany
- 1-5 ns accuracy and 10 ps precision

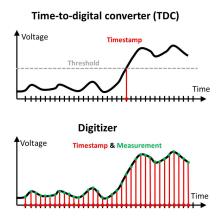
Time-based control - example application

- GSI Helmholtz Centre for Heavy Ion Research in Germany
- 1-5 ns accuracy and 10 ps precision
- WR network at GSI:
 - Operational since June 2018: 134 nodes & 32 switches
 - Final: 2000 WR nodes & 300 switches in 5 layers



Drasias	time e eterm			
00000000000				
Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR

Precise timestamping


Association of time with

- an event
- a sample (measured value)

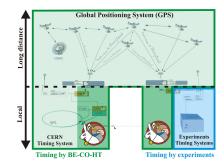
Precise	timestam	pina		
Applications	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR

- Association of time with
 - an event
 - a sample (measured value)
- The most widely used WR application

Applications ○○○○●○○○○○○	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR			
Precise	Precise timestamping						

Association of time with

- an event
- a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement

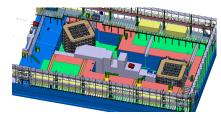

Draging time stamping					
Applications	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR 000000	
A constitution of the constitution of		MD Outstale Internals	M/D Deufermeren einen Instrumenten eine	Determinister in M/D	

Precise timestamping

Association of time with

- an event
- a sample (measured value)

- Time-of-flight measurement
 - Speed of neutrinos CNGS



Precise	timestam	nina		
Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR

Association of time with

- an event
- a sample (measured value)

- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE

Precise	Precise timestamping							
Applications	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR				

Association of time with

- an event
- a sample (measured value)

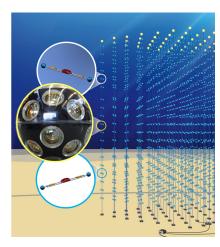
- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
- Cosmic ray and neutrino detection

Dracia timestamping						
00000000000	00		0000	000000		
Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR		

Precise timestamping

Association of time with

- an event
- a sample (measured value)


- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
- Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory

D	Describes the sector sector					
Applications	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR		

Precise timestamping

- Association of time with
 - an event
 - a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope

Precise	timestam	nina		
Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR

Association of time with

- an event
- a sample (measured value)

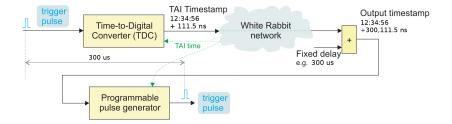
- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
- Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope
 - Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy

Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR

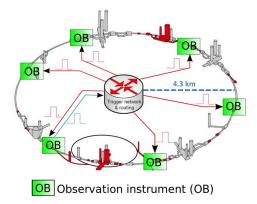
Precise timestamping

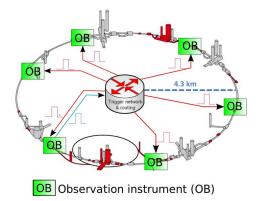
Association of time with

- an event
- a sample (measured value)

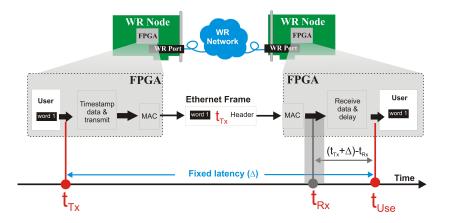

• The most widely used WR application

- Time-of-flight measurement
 - Speed of neutrinos CNGS
 - Types of particles ProtoDUNE
- Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope
 - Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy
- High Frequency Trade monitoring
 - German Stock Exchange


Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR

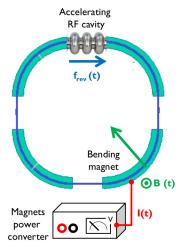

Trigger distribution - example applications

LHC trigger distribution to measure beam instabilities - since 2016

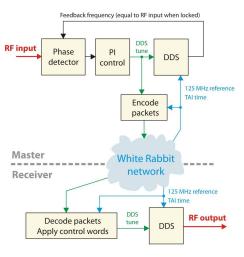

Trigger distribution - example applications

LHC trigger distribution to measure beam instabilities - since 2016

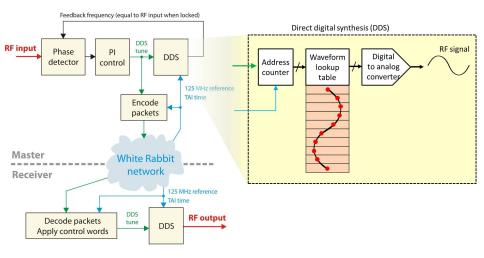
WRTD - White Rabbit Trigger Distribution- to be used for CERN's Open Analog Signals Information System (OASIS)


Fixed-latency data transfer

 Applications
 Standardisation
 WR Switch Internals
 WR Performance Improvements
 Determinism in WR


 Fixed-latency data transfer example application

Distribution of magnetic field in CERN accelerators

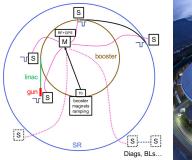

D				
Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR

Radio-frequency transfer

Applications ○○○○○○○●○	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR 000000
D II (6		

Radio-frequency transfer

Applications


Standardisation

WR Switch Internals

WR Performance Improvements

Determinism in WR

Radio-frequency transfer - example application

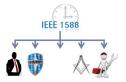
• RF over WR at European Synchrotron Radiation Facility (ESRF)

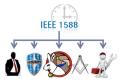
- A prototype tested in operation: <10 ps jitter
- RF over WR at CERN
 - A prototype: <100 fs jitter and <10 ps reproducibility over reboots

Applications	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR
Outline				

- 8 Standardisation
- 9 WR Switch Internals
- WR Performance Improvements
- 11 Determinism in WR

• IEEE standards are revised periodically


- IEEE standards are revised periodically
- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"



- IEEE standards are revised periodically
- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees

- IEEE standards are revised periodically
- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees
- High Accuracy sub-committee
 - Focus on White Rabbit
 - Experts from industry and academia
 - Division of WR into self-contained parts
 - Definition of Optional Features and PTP Profile that allow WR-like implementation and WR performance

WR Switch Internals

WR Performance Improvements

Determinism in WR

- IEEE standards are revised periodically
- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees
- High Accuracy sub-committee
 - Focus on White Rabbit
 - Experts from industry and academia
 - Division of WR into self-contained parts
 - Definition of Optional Features and PTP Profile that allow WR-like implementation and WR performance

WR Switch Internals

WR Performance Improvements

Determinism in WR

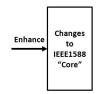
- IEEE standards are revised periodically
- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees
- High Accuracy sub-committee
 - Focus on White Rabbit
 - Experts from industry and academia
 - Division of WR into self-contained parts
 - Definition of Optional Features and PTP Profile that allow WR-like implementation and WR performance
- Revised IEEE 1588 approved on 7 Nov 2019

Applications

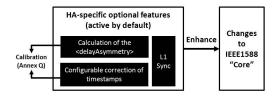
WR Switch Internals

WR Performance Improvements

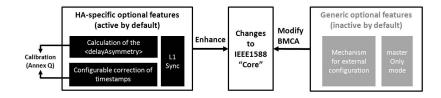
Determinism in WR


WR standardisation in IEEE 1588 (2)

White Rabbit integration into IEEE 1588 as High Accuracy: https://www.ohwr.org/projects/wr-std/wiki/wrin1588

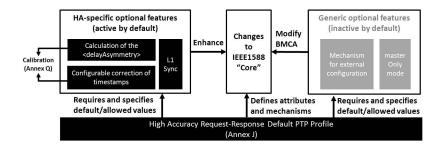


Applications Standardisation WR Switch Internals WR Performance Improvements Determinism in WR occord WR standardisation in IEEE 1588 (2)

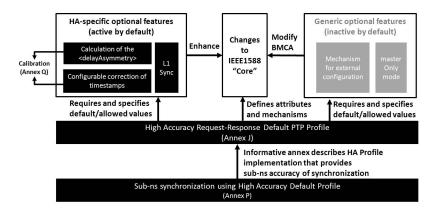

White Rabbit integration into IEEE 1588 as High Accuracy:

WR standardisation in IEEE 1588 (2)

White Rabbit integration into IEEE 1588 as High Accuracy:


WR standardisation in IEEE 1588 (2)

White Rabbit integration into IEEE 1588 as High Accuracy:


Applications Standardisation WR Switch Internals WR Performance Improvements Determinism in WR

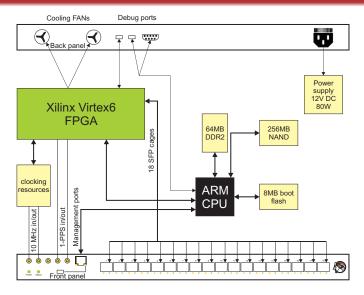
WR standardisation in IEEE 1588 (2)

White Rabbit integration into IEEE 1588 as High Accuracy:

WR standardisation in IEEE 1588 (2)

White Rabbit integration into IEEE 1588 as High Accuracy:

Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR
Outline				

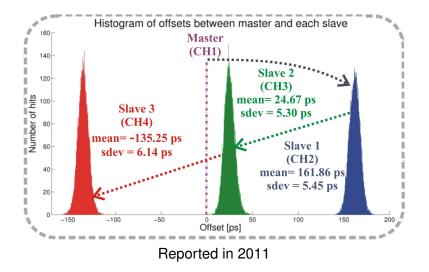

- 8 Standardisation
- WR Switch Internals
- WR Performance Improvements
- 11 Determinism in WR

Applications Standardisation WR Switch Internals WR Performance Improvements

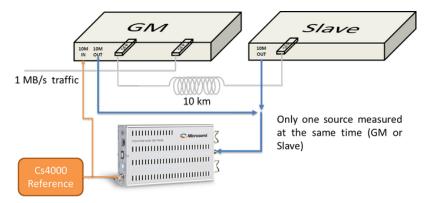
Determinism in WR

Simplified block diagram of the WR Switch hardware

Applications	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR
Outline				

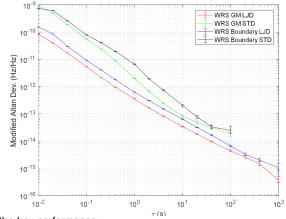


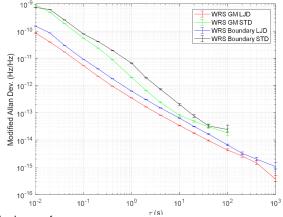
- 8 Standardisation
- 9 WR Switch Internals
- 10 WR Performance Improvements


11 Determinism in WR

Applications Standardisation WR Switch Internals WR Performance Improvements Determinism in WR

Time transfer: out-of-the-box




Measurement device: Microsemi/Microchip 3120A Phase Noise Test Probe

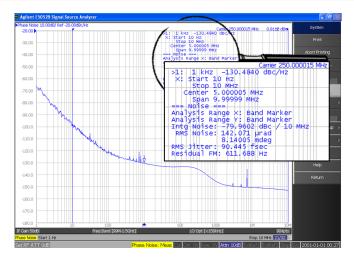
Frequency transfer: out-of-the-box and improved

- Out-of-the-box performance:
 - GM-in to GM-out: jitter of 9 ps RMS 1 Hz–100 kHz and MDEV of 2E-12 τ=1 s ENBW 50 Hz
 - GM-in to Slave-out: jitter of 11 ps RMS 1 Hz–100 kHz and MDEV of 4E-12 τ=1 s ENBW 50 Hz

Frequency transfer: out-of-the-box and improved

- Out-of-the-box performance:
 - GM-in to GM-out: jitter of 9 ps RMS 1 Hz–100 kHz and MDEV of 2E-12 τ=1 s ENBW 50 Hz
 - GM-in to Slave-out: jitter of 11 ps RMS 1 Hz–100 kHz and MDEV of 4E-12 τ=1 s ENBW 50 Hz
- WR Switches improved with Low Jitter Daughterboard (LJD):
 - GM-in to GM-out: jitter of 1 ps RMS 1 Hz–100 kHz and MDEV of <5E-13 τ=1 s ENBW 50 Hz</p>
 - GM-in to Slave-out: jitter of <2 ps RMS 1 Hz–100 kHz and MDEV of <7E-13 τ=1 s ENBW 50 Hz

Applications


Standardisation

WR Switch Internals

WR Performance Improvements

Determinism in WR

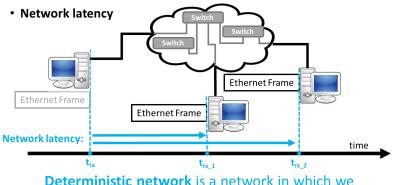
WR time & frequency tranfser: state of the art

GM-out to end-node-out: accuracy of <10 ps

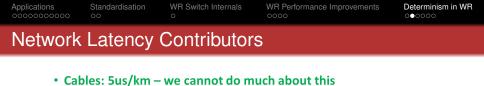
GM-out to end-node-out: jitter of <100 fs RMS 10 Hz-10 MHz

Applications	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR
Outline				

- 8 Standardisation
- WR Switch Internals
- WR Performance Improvements



00000000000	00	0	0000	00000
	Standardisation	WR Switch Internals	WR Performance Improvements	Determinism in WR


Determinism and Network Latency

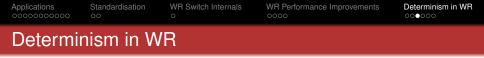
• Determinism

A deterministic system is predictable: it provides calculable and consistent characteristics of operation that are required by the application, e.g. **network latency** of data transmission.

can calculate the maximum latency

Switch

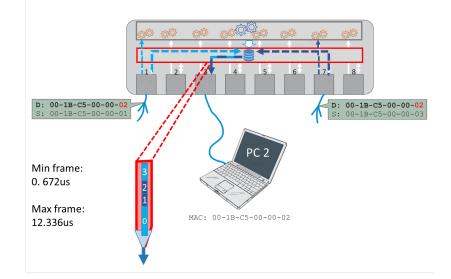
Switch


We can do something about this

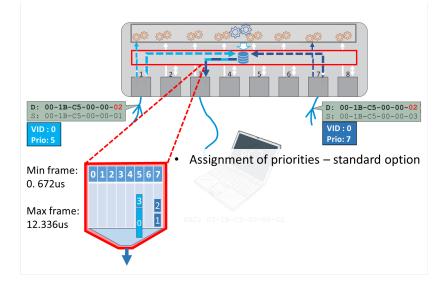
Switch

Switch operation

Other traffic

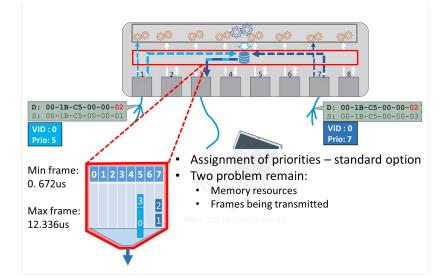

Maciej Lipiński White Rabbit

- "White Box" design of WR switch allows thorough analysis
- Backward-compatible extension of the IEEE 802.1Q std

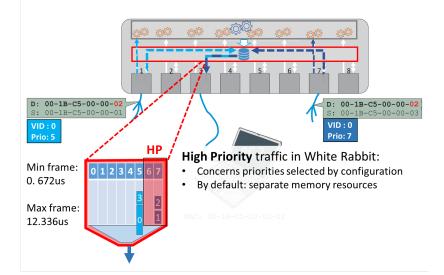

Applications	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR
Priorities	۹			

Maciej Lipiński White Rabbit

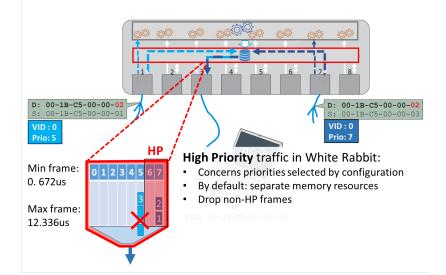
66/38


Applications	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR
Priorities	\$			

Maciej Lipiński White Rabbit



Applications	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR
Priorities	\$			


Applications			WR Performance Improvements	Determinism in WR ○○○○●○
High Pri	ority			

Э.

Applications			WR Performance Improvements	Determinism in WR ○○○○●○		
High Priority						

Applications	Standardisation	WR Switch Internals o	WR Performance Improvements	Determinism in WR ○○○○○●

WR Switch Latency

Fiber	SPIRENT S	pirent TestCer	nter		Latency [us]			
(5m)	(5m) WR Switch		Intervening traffic	One switch		Two switches		
				traffic	Max	Pk-pk	Max	Pk-pk
Deterministic stream Best effort stream Best effort				No	3.1	0.3	5.8	0.5
		·		WR-PTP	5.6	2.8	8.7	3.9
stream Best effort	4			Non-HP traffic	3.1	0.2	N/A	N/A
stream Maximum latency for 10 streams between 4 ports (no PTP traffic) (deterministic) +-P5 -> P0								

