

GÉANT Infoshare: Management and monitoring of time & frequency services

Optical carrier transfer (Frequency)

Nicolas QUINTIN, GIP-RENATER

WP6 T1 OTFN 20 June 2022

Agenda

GÉANT

Networks · Services · People

- RENATER optical network
- "REFIMEVE" T/F infrastructure in France
- IP connectivity in Inline Amplifier (ILA) sites
- Supervision and monitoring of T/F equipment
- Maintenance in operational condition and day-to-day routines

RENATER optical network

Photonic layer

- ➤ Mainly using **Infinera** equipment (ex CORIANT) to transmit, amplify and receive information
- > This equipment is procured on 8 years period
- ➤ Contra-Raman pumps, F-OADM, coherent network, QPSK or QAM modulations (up to 16 QAM)
- ➤ In particular regions, some old CIENA equipment remains (10G QPSK)

NSOC

- Outsourced (8 years period contract)
- Fibre footprint
 - ➤ 12 000 km of dark fiber (mainly G.652) 4th European NREN with the largest dark fiber footprint (Compendium 2019),
 - > IRU mostly, for a **10-13** years period contract

RENATER optical network

Hit 7300 SRS3 and SFL type shelves

- Optical power amplification, channel power adjustment (VOA), power monitoring (MCP)
- Large range of amplifiers: inline, booster and pre-amplifier
- Combination with RAMAN pump to improve distance or Baud rate
- Optical (Och/OMS) protection

Mux/Demux filter:

- 40 channels in C-Band
- Channel central frequency spacing of 100 GHz

mTera

- Client service interfaces: 10 GE, 100 GE
- Line interface (transponders): OTU4, OTU4c2
- **Cross-connect OTN**
- Packet switching
- **ODU** protection

Two projects

REFIMEVE + (2012-2024) and **T-REFIMEVE** (2021-2028)

- Bidirectional propagation required
- @1542,14nm, ch.44 ITU-T (dark channel setup)
- > spectral occupation <10kHz, output power <3dBm
- Ultrastable signal (fractional frequency stability 10⁻¹⁵ at 1s ≈1 000 better than White Rabbit 10⁻¹²)
- Observatoire de Paris (NMI), Laboratoire de Physique des Lasers (LPL) + RENATER + 17&24 academic laboratories

T-REFIMEVE

Operating T/F

Future T/F

Feedbacks

3 123/4 898 km of fibre equipped, TRL 9
12 years of T/F cohabiting with data traffic
(Alcatel, Ciena and Coriant)
Supervised by successive RENATER NSOC (Thales and CCNS)
Propagating without gardband
RENATER IP End-users have never been impacted by T/F service

REFIMEVE

- national Research Infrastructures (RI) since 2021,
- first national T/F network contribution to T/F European
 Research Infrastructures

T-REFIMEVE

Operating T/F

Future T/F

Typical T/F link in France

Standard height

RLS Repeater Laser Station

Dedicated rack view

SFL-1 shelf DADM REFIMEVE - Est OADM SFL1 Bidirectional T/F amplifier

Shelter site rack view

Reapeter Laser Station (RLS)

https://www.ixblue.com/

Optical	Wavelength (THz or nm)	194.4THz
	Spectral occupation	<5GHz
	max Output power (dBm)	3dBm
	min Input power (dBm)	-60dBm
	Connector type	FC/APC
Hosting	Typical Power consumption	120W
	Alimentation	220V AC
	Dimensions	19", 540mm, 7RU
	Weight (kg)	7kg
IP	Connectivity port	10/100/1000 Base-T port
	Protocols	SNMPv3 and SSH

Bidirectional amplifiers and OADM

https://www.lumibird.com/

		T/F Amplifiers	OADM
	max Output power (dBm)	3dBm	X
	min Input power (dBm)	-50dBm	X
	Typical gain (dB)	14dB	X
	Connector type	FC/APC	FC/APC and LC/PC
Hosting	Typical Power consumption (W)	<15W	passive
	Alimentation	-48V DC	X
	Dimensions	19", 240mm, 1RU	19", 240mm, 1RU
	Weight (kg)	2kg	0,5kg
IP	Connectivity port	10/100 Base-T port	X
	Protocols	SNMPv2 and SSH	X

https://www.infractive.com/

IP connectivity in PoP and ILA

Easy in PoP thanks to routers 😲

.... but no OSC going through T/F amplifiers in ILA 🕾

First solution in 2012 using GSM

Coriant controller card

OSC specifications		
Number of generated channels	3 (1 DCN and 2 User Channels) 10/100 ports	
	Without user channels:	
Bandwidth for DCN channel	OSC: 10 Mbit/s Fast OSC: 20 Mbit/s	
Bandwidth for DCN Channel	With 2 user channels:	
	OSC: 8 Mbit/s Fast OSC: 20 Mbit/s	
Bandwidth for user channels (per user channel)	OSC: 1 Mbit/s Fast OSC: 20 Mbit/s	

Source: Infinera hiT7300 Product Description (PD)

Bringing it in ILA

ILA#1

Supervision and monitoring of T/F equipment

What are the key parameters required when implementing new equipment in a telecommunication network?

Tools and procedures are put in place to satisfy with telecom standards

- Ability to collect traps (day-to-day supervision)
 SNMPv2 (amplifiers) and SNMPv3 (RLS)
- Ability to switch on/off amplifiers/RLS (monitoring)
 SNMPv2 or SNMPv3 and SSH

Ticketing procedures (will be detailed further):

- to inform users
- to activate manufacturer or tierce party-company

Supervision and monitoring of T/F equipment

Different supervision layers

- uporvision
- ✓ **Supervision software:**monitor and control the
 REFIMEVE+ performances
- ✓ **Database:** store all the information useful to the network management
- ✓ Human-machine interface: for final users, academic teams and the network manager

Maintenance in operational condition and day-to-day routines

T/F integrated in day-to-day routine

Maintenance in operational condition and day-to-day routines

T/F Ticketing procedures

Wrap up

- Operating T/F network
 - Has to be easily integrated in day-to-day routine
 - Requires in-band connectivity to be performant (requires early consideration)
- Key aspects of monitoring and supervision
 - Responsibility layers for each actor
 - Monitored parameters for NOC => being able to turn off the T/F channel

REFIMEVE Infrastructure

- Safe environment: 12 years of background experience of T/F service propagating without incident with IP data traffic in real field
- 7 years of work with private companies and different NOC that understand, comply and work according with NREN processes and constraints

T/F services is safe, doable with high TRL equipment. T/F can be integrated in NREN day-to-day procedures

Thank you Any questions?

nicolas.quintin@renater.fr

©

R

