

Detecting anomalous latency and jitter in Timemap

Fabio Farina (GARR)

On behalf of GN4-3 WP6 T1 Team

2nd Performance Management Workshop March 8th 2022

Public

www.geant.org

Outline

- Why Timemap
- Current status
- Beyond observation: anomaly detection
- Further development

Road report: on HWY 101 there are 364 vehicles per minute

it may be nice...

Or lots of stop & go

Current weather maps are useful for bulk data transfer!

Applications which need "cruise control" on are on fast rise!

LoLa

+ 30%

Involved NRENs: do they all know about this?

Rhnet*

Jisc

RedIris

RENATER

BELnet

SURFnet

GARR

SWITCH

DFN

Uninett*

Sunet*

DelC*

ACOnet

CESnet

PSNC

ARNES

AMRES

NIIF

RoEduNet

GRNET

Litnet

EEnet

FUNET*

BASNET

ASNET-AM

AZscienceNet

RENAM

* Nordunet

LATNET IUCCL

TIMEMAP architecture and features

- Latency & Jitter data collection
 - RPM from all GÉANT routers
 - TWAMP from selected perfSONAR VMs and GEANT routers
- Simplicity: almost zero footprint
 - Docker + Linux packages
 - Minimal custom code
 - Dynamic weather map GUI
- Security
 - eduGAIN authentication
 - RBAC and multi-tenancy

TIMEMAP v1 architecture – 1+ year of data taking

Have a look

• The service

https://timemap.geant.org/

 Documentation: source code, user and admin guides, customization

https://gitlab.geant.org/gn4-3-wp6-t1-lola/timemap_public

Timemap useful examples

Timemap useful examples: rerouting and periodic events

Timemap useful examples: trends

Anomaly Detection (AD) in Timemap - requirements

- Move beyond the simple observation
 - AD for Analytics and Alerting
 - Co-occurring events correlation

- Requirements on AD machine learning
 - Real-time or micro-batch learning/inference
 - Robust estimation
 - Light footprint

Anomaly Detection in Timemap – toolset

- Anomaly Detection, in short
 - Std.Dev classification
 - Unsupervised
 - Sensible to overfit

 Streaming ML in Python https://riverml.xyz

Anomaly Detection in Timemap – architecture

Network topology and ML models

Almost the same look and feel

One more plot

Performance and efficiency

- AD frequency == sampling frequency (5m)
- ~3500 observations every micro-batch (3s execution time)

Learning rate

Conclusion and next steps

- Anomaly Detection
 - Up and running, requirements satisfied
 - Streaming ML, multi-model over network topology
 - About 200 lines of code in a Docker image
- Coming soon
 - Timemap hand-over to Géant Operations
 - Timemap @ GARR
 - Alerting & Events correlation
- More deployments @NRENs

Thank you

Any questions?

gn4-3-wp6-t1-lola@lists.geant.org

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 3 project (GN4-3). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 856726 (GN4-3).