

GIX Implementation Based on White Box

White Box in NREN context

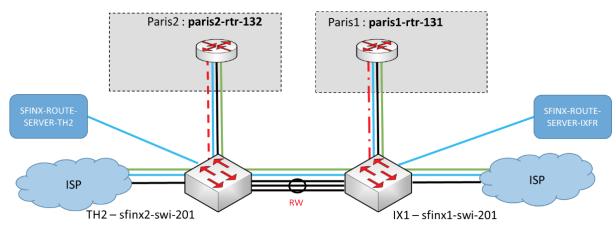
Wisslé Maxime, RENATER

GÉANT Infoshares, 8 December 2021

Public

www.geant.org

RENATER Global Internet eXchange (GIX) in Paris - SFINX


 A GIX provide the physical infrastructure for traffic exchange between Autonomous System (ISP and large networks)

- RENATER GIX SFINX
 - Created in 1995
 - 2 POPs in Paris
 - 2 Route Servers
 - 35 peers
 - PeeringDB : https://www.peeringdb.com/ix/34

- One switch at each POP
 - 3x10Gb/s LAG to connect them
- A set of VLANs
 - ID 2 for unicast traffic
 - ID 5 for multicast traffic
 - ID 98/99 for the management (only RENATER and NOC)

White Box: SFINX Goals

- Renew the SFINX with the same features but the TCO must not exceed the previous infrastructure
- Increasing the independence from traditional vendors
- Get ready to deploy new features after the renewal
 - EVPN
 - VXLAN
 - Etc
- Gain experience on White Box paradigm

New GIX Requirements

Operation and Management	Security	Routing and Switching	Performance and Reliability
 OOB Access Management access (SSH) Authentication and Authorisation Logging Monitoring Automation 	 IP Layer (ACL) MAC Layer (MAC ACL) 	 VLAN Spanning Tree Protocol (STP/RSTP/) Core (EVPN/VXLAN) 	Switching/forwardingBandwidthReliability

Implementation

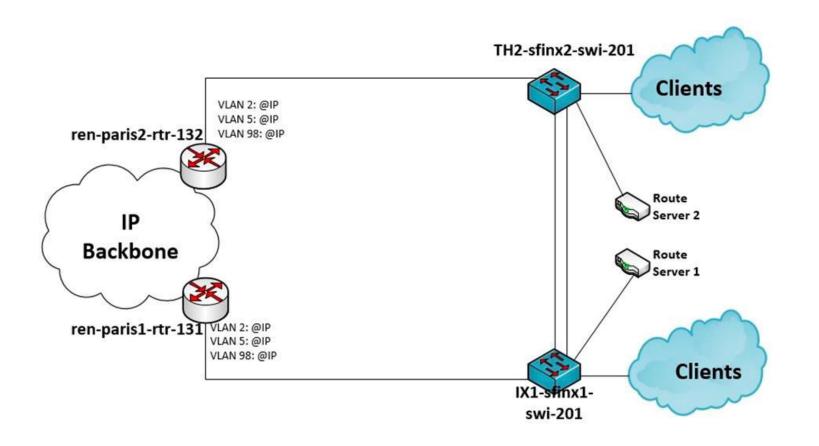
- Network Operating System (NOS)
 - OcNOS from IPInfusion
 - Deployed in the London Internet Exchange (LINX)
 - MPLS features
 - Competitive software maintenance
- Hardware
 - DELL S4048-ON
 - Support several NOS
 - ONIE
 - Broadcom Trident 2 chipset
 - 48x10Gb/s interfaces and 6x40Gb/s uplink ports
 - 720Gb/s forwarding performance

- Out of Band (OOB) Access
 - Take control over the OOB Network
 - Reinstall/install the NOS if required
 - From network (management interface)
 - From USB stick
- Management Access
 - Cannot be restricted easily (in-band ports)
 - VLAN interface and IP address
 - SSH ACL

- Authentication and Authorisation
 - Prerequisites: should be done using the RENATER Backbone TACACS system
 - OcNOS supports TACACS but does not use the same autorisation system
 - It requires its own TACACS server
 - Trade-off: It uses the RENATER TACACS but with sub-optimal authorisation
- Logging
 - Implemented without any problems
 - The configured logs are sent to a log server

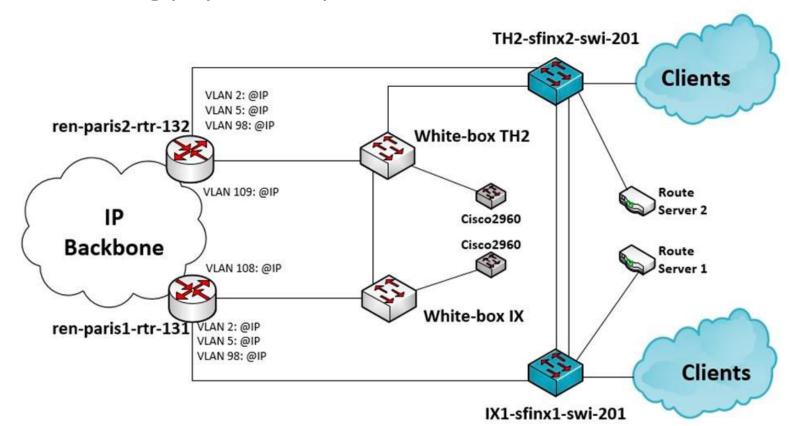
- Monitoring
 - SNMP implemented without any problems
 - The WB are polled by SNMP collectors
- Automation
 - Automation with Ansible was tested successfully
 - Ansible module provided
- Security
 - IP layer with ACL
 - MAC layer with ACL and Broadcast Storm control

- Routing and Switching
 - VLANs
 - RSTP per VLAN
 - Not compatible with old SFINX switches (interoperability)
 - Remove of RSTP
 - Loop free layer 1 architecture
 - Possibility to change the core architecture by replacing the layer 2 with an EVPN over IP
 - Bug discovered during the tests that slowed down the device
 - Due to the BIOS of the DELL switch
 - NOS supplier provided a patch

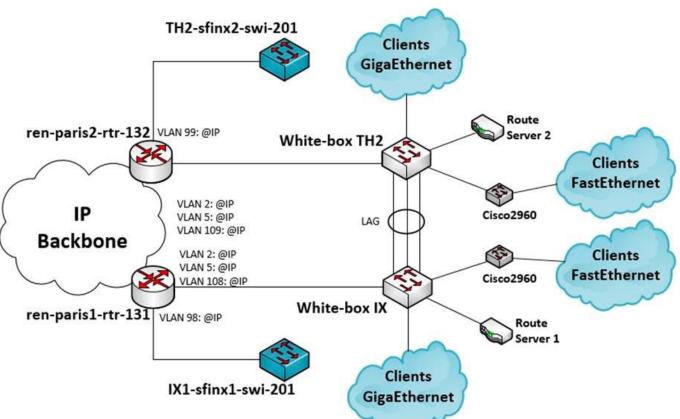

Total Cost of Ownership Assessment

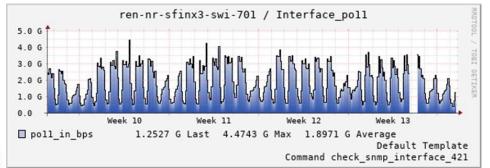
- Use of white paper "White Box Total Cost of Ownership" and "TCO Calculator"
 - White Paper: White Box Total Cost of Ownership
 - TCO Calculator
- From our cost assessment, the new version of the SFINX is significantly cheaper than the previous version

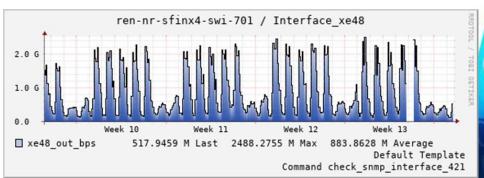
Migration plan


• Ensure a smooth and stable transition

Migration plan


- Introduction of the White Boxes in the topology
- Incompatibility of the RSTP between olds devices and the White Boxes
 - Avoiding physical loops





Migration plan

Last step

Conslusions

- Main goals achieved
 - SFINX was renewed with similar set of features
 - Lower cost
 - More independance from traditional vendors
 - Run in production for several months without any problems
- Some features are not compatible with traditional vendors application
- Getting started with the new NOS, OcNOS (Cisco like)
 - Easy to learn and use for engineers accustomed with Cisco
- RENATER acquired experience in White Box deployment and management

Thank you

Any questions?

www.geant.org

© GÉANT Association on behalf of the GN4 Phase 3 project (GN4-3). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 856726 (GN4-3).

